
Super-Connectors: Immigrant Executives and the

Architecture of R&D Networks

Yajie Xu

University of South Florida

Kazuma Takakura

University of Maryland

February 1, 2026

[Click here for the most recent version]

Abstract

This paper investigates the micro-foundations of R&D network formation and its

impact on firm performance, specifically examining the role of immigrant executives

in reducing collaboration frictions. Building upon Cournot competition and network

formation game theory, we develop a structural model that captures the trade-off

between technology spillovers and product market rivalry. In the first stage, firms

form linkages based on a random utility framework; in the second stage, they compete

in output level conditional on the formed network. This theoretical framework

naturally provides a two-step instrumental variable strategy to address the empir-

ical identification challenge posed by network endogeneity. Using a novel dataset

combining firm leadership profiles with R&D activities, we find that the presence of

immigrant executives significantly lowers link-specific costs, approximately tripling

the odds of forming R&D alliances in the US sample. Furthermore, our analysis

reveals asymmetric spillover effects: immigrant-led firms generate substantial positive

externalities that enhance the productivity of native-led firms. These findings suggest

that diversity in corporate leadership facilitates network densification and efficient

knowledge diffusion.
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1 Introduction

Innovation is the primary engine of modern economic growth, yet firms rarely innovate in

isolation. They are embedded in complex networks of research and development (R&D)

collaborations where they simultaneously compete for market share and cooperate to share

knowledge. The existing literature has robustly established that these R&D networks are

not random; they exhibit specific structural features such as sparsity, clustering, and degree

heterogeneity (Hanaki et al., 2010; Tomasello et al., 2016). However, while the structural

properties of these networks are well-documented, the specific micro-foundations driving

the formation of these links, particularly the role of human capital composition in lower-

ing collaboration costs, remain underexplored. This paper bridges that gap by examining

how immigrant executives shape the topology of R&D networks and, subsequently, firm

performance.

We posit that the formation of R&D alliances is driven by a trade-off between local

knowledge spillovers (complementarities) and global product market competition (substi-

tutability), a tension formalized in the work of Bloom et al. (2013) and König et al. (2019).

Within this framework, we propose the driving factor of network formation: the immigrant

executive. Drawing on Upper Echelons Theory (UET), we argue that immigrant execu-

tives possess distinct social capital profiles that reduce information asymmetries and search

costs, particularly in cross-border or diverse contexts (Kim and Higgins, 2007; Hambrick

and Mason, 1984). By integrating unique data on firm leadership with structural network

econometrics, we investigate whether immigrant backgrounds serve as a catalyst for network

densification and whether the resulting spillovers yield heterogeneous returns for native ver-

sus immigrant-led firms.

To identify these effects, we employ a structural joint model of network formation and

economic outcome. Our theoretical framework utilizes a two-stage game similar to Goyal

and Moraga-González (2001) and Jackson (2008). In the first stage, firms endogenously form

collaboration links based on a random utility framework, where the decision to collaborate

depends on the marginal gain in profit versus link-specific costs. In the second stage, condi-

tional on the network formed, firms engage in Cournot competition, choosing optimal output

and R&D effort levels. This structure allows us to model the network not as an exogenous

fixed matrix, but as an equilibrium outcome of strategic choices subject to idiosyncratic

shocks, specifically Type-I extreme value errors, which enable the use of a logistic network

formation model (Mele, 2017).

Standard estimates of peer effects are often plagued by the reflection problem and selec-

tion bias (Manski, 1993). We overcome this by employing a two-step instrumental variable
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(IV) strategy following König et al. (2019). Unlike standard approaches that assume homoge-

neous peer effects, we extend their work by using a higher-order Spatial Autoregressive (SAR)

model that allows for group-level heterogeneity, distinguishing the magnitude of spillovers

generated by immigrant-led firms versus native-led firms Hsieh and Lee (2016).

Our empirical analysis yields three distinct contributions. First, extending the work of

König et al. (2019), we provide evidence that the presence of immigrant executives signifi-

cantly lowers the threshold for link formation. Specifically, we find that having an immigrant

executive triples the odds of forming an R&D alliance in the US sample, suggesting that di-

versity is a critical driver of network connectivity. Second, we quantify the economic value

of these connections, showing that technology spillovers significantly enhance firm output

beyond what internal R&D investment achieves. Finally, we uncover a crucial asymmetry

in spillover directions: immigrant-led and foreign firms impart substantial net positive ex-

ternalities to native-led firms, supporting the “rising tide” hypothesis of globalization in

innovation networks.

The remainder of this paper is as follows: Section 2 reviews the literature on R&D

cooperation and the role of immigrants. Section 3 outlines the theoretical two-stage game and

the micro-foundations of the profit function. Section 4 describes the unique dataset employed

in this study. Section 5 outlines the methodology, including the regression models used for

analysis. The estimation results are presented in Section 6, followed by the conclusions

in Section 7. To maintain clarity and conciseness in the main text, additional materials,

including tables with a sample company profile and the proof of the validity of the IV

methods for the SAR model, are provided in Section 9.

2 Literature Review

This paper builds on prior work about the impact of immigrants on innovation and R&D

networks. In the U.S., skilled immigrants have been playing an important role for the inno-

vation (Ganguli and MacGarvie, 2025; Glennon, 2024). Bernstein et al. (2022) found that

while immigrants account for roughly 16% of U.S. inventors, they are responsible for 23% of

total innovation output. More importantly, they generate significant positive externalities

for their native collaborators. In those processes, networks play a key role. For instance,

Chinese and Indian immigrant networks in Silicon Valley have facilitated the extensive clus-

tering of Chinese and Indian high-tech entrepreneurs within a small geographic area (Kerr

and Kerr, 2019). Bolzani and Scandura (2024) shows the importance of domestic collabora-

tion networks for innovation in immigrant- and native-owned firms using survey data. We

contribute to this literature by adding another empirical evidence from the conmprehensive
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dataset on the impact of immigrants on innovation and quantifying its importance through

the R&D networks.

More broadly, this paper studies the role of collaboration in knowledge spillovers. Akcigit

et al. (2018) shows that interactions with better inventors are strongly correlated with re-

searchers’ productivity. Zacchia (2020) studied the interactions between individual inventors

from different companies that drive knowledge spillovers among firms. In his study, in which

he estimated the spillover effects given an exogenous network structure using the microdata

of inventors’ collaboration, the endogeneity of network formation was not involved in the

model. Furthermore, alliances between firms are driven not only by collaboration between

inventors, but also by social networks of their top management team (Kim and Higgins,

2007). In our study, we link entrepreneurs’ micro-behaviours to firm-level outcomes and for-

mally conceptualize the endogenous network formation process to identify the contribution

of immigrant-led firms on knowledge spillovers.

We also contribute to the literature of bridging R&D spillovers and strategic network

formation. Bloom et al. (2013) is one of the novel studies on this topic, which has disentan-

gled the degree of R&D spillovers from the negative competition effect against market rivals.

König et al. (2019) describes the empirical model that incorporates both R&D spillovers and

market competition. They provide a characterization of the Nash equilibrium and struc-

turally estimate the model to quantify the degree of R&D spillovers compared to the market

competitiveness. Their model focuses on how R&D networks works based on homogeneous

technology spillovers and competition. We extend König et al. (2019) by introducing the

network formation stage and heterogeneous knowledge spillovers. We argue that immigrant

executives have a lower marginal cost of forming international or diverse links, which alters

the equilibrium network structure. Also, we separately quantify the knowledge spillover ef-

fects between different pairs of firms. Our empirical results may shed lights on the targeting

policy to accelerate innovation.

3 Theoretical Framework

3.1 Two-stage Game Model

We consider a two-stage game with complete information (Goyal and Moraga-González,

2001; Jackson, 2008). Consider a set of firms K = {1, . . . , k} is partitioned in industries D =

{1, . . . , d}. Those firms are producing single-product and they are imperfectly differentiated.

We characterize the market as a Cournot competition. As well as the quantity choice in a

usual Cournot competition game, firms also conduct R&D to improve their productivity,

3



both solely and jointly. Firm i decides whether to form a collaboration with another firm in

the first stage, THE given the equilibrium networks, firm i chooses its output level yi and

R&D effort level ei in the second stage.

We describe the structure of this game backward. In the second stage, given the col-

laboration network, firms compete in the Cournot competition market. Assuming that the

potential for the goods to be imperfect substitutes, the inverse demand function is expressed

as:

pi = p̄d − yi − ρ
k∑

j=1

bijyj. (1)

Here, p̄d captures industry variations, while ρ > 0 represents the substitutability extent

between products. The dummy variable bij ∈ [0, 1] is an entry of the matrix B that describes

the product market closeness of goods i and j. When goods i and j are substitutable, bij

becomes close to 1 and yj will influence pi. Assuming bii = 0, which reflects that a firm’s

own products do not compete with one another.

We also need to specify the marginal cost. We assume that each firm faces a fixed

industry-specific marginal production cost c̄d, and can reduce it by investing in research

and development (R&D), representing the R&D effort of firm i as ei. This cost reduction

is not only come from the effect of a firm’s own effort ϕ, but is also associated with the

spillover effect λ from collaborating firms’ efforts. The corresponding marginal cost ci can

be expressed as:

ci = c̄d − ϕei︸︷︷︸
own effort

−λ
k∑

j=1

aijej︸ ︷︷ ︸
spillover

. (2)

Let us define the collaboration matrix A. Each element aij is a binary dummy variable,

which equals to 1 if firm i and j collaborate, and 0 otherwise. Since this relation is reciprocal,

aij = aji. aii is set to zero to ensure that spillover effects are not confounded with the effects

of a firm’s own characteristics indicates whether firm i and j collaborate together or not.

We set aii = 0 for all i = 1, ..., N , to exclude self-loop.

It’s posited that the R&D effort’s associated cost (or the R&D investment) increases with

effort, displaying diminishing returns, specifically ψ. A network formation cost, γ, is also

introduced, which detracts from the profit of firm i and firm j when aij = 1. Consequently,
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the profit for firm i is

πi = πi(yi, ei) = (pi − ci)yi − ψe2i −
k∑

j=1

aijγ (3)

Substituting equations (1) and (2) into (3) gives:

πi = −y2i − ψe2i + ϕyiei + (p̄d − c̄d)yi +

(
−ρ

k∑
j=1

bijyj + λ

k∑
j=1

aijej

)
yi −

k∑
j=1

aijγ

Optimizing with respect to ei and yi yields:

ei =
ϕ

2ψ
yi (4)

2yi = ξi − ρ
k∑

j=1

bijyj + ϕei + λ
k∑

j=1

aijej (5)

where ξi = p̄d− c̄d. We can denote this optimality condition by substituting ei from equation

(4) to (5) without e such that

yi =
2ψ

4ψ − ϕ2
ξi + λ

ϕ

4ψ − ϕ2

k∑
j=1

aijyj − ρ
2ψ

4ψ − ϕ2

k∑
j=1

bijyj, (6)

where ψ is sufficiently large, i.e., 4ψ − ϕ2 > 0.

In the first stage, firm i proposes a collaboration to firm j when the marginal gain

from the collaboration is positive. Following the discrete choice random utility framework

(McFadden, 1972), we assume that firm i’s perceived utility from a network stateA is given by

Πi(y, A)+ εij, where Πi(·) represents the deterministic profit depending on the output levels

y and network structure A, and εij captures an idiosyncratic link-specific shock. Given the

output levels, the deterministic marginal gain δij from establishing a link (i, j) is equivalent

for both firms (reciprocity) and is given by:

δij = πi(yi, yj | aij = 1)− πi(yi, yj | aij = 0) =
ϕλ

2ψ
yiyj − γ + ϵij, (7)

where ϵij = ϵi|{aij = 1} − ϵi|{aij = 0}. Since cooperation is a reciprocal relationship,

the marginal profit gain δij of firm i from cooperation with firm j, is the same as the
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other way around, δij = δji. We assume that εij follows an identically and independently

distributed Type-I extreme value (Gumbel) distribution, following the structural network

formation literature (Mele, 2017; Hsieh et al., 2025a). This distribution is chosen because

the difference of two independent Gumbel variables follows a logistic distribution, which

provides a tractable likelihood function (McFadden, 1972; Anderson et al., 2199). More

crucially, this property ensures that the dynamic updating process converges to a unique

stationary distribution characterized by an Exponential Random Graph Model (ERGM).

The probability that a link is formed follows a logit model:

log

(
P (aij = 1)

1− P (aij = 1)

)
= ϑδij = ϑ

(
ϕλ

2ψ
yiyj − γ

)
, (8)

where ϑ is the inverse noise parameter (or inverse temperature). This parameter governs

the rationality of the network formation process: as ϑ → ∞, the noise vanishes and firms

deterministically form links whenever the marginal profit is positive; as ϑ → 0, economic

incentives become irrelevant and link formation becomes purely random (Hsieh et al., 2025b).

3.2 Heterogeneity

To better understand the mechanism, we extend the structural models by introducing 2 types

of heterogeneity: pair-wise heterogeneous collaboration costs and group-level heterogeneous

spillover and competition effects.

3.2.1 Heterogeneous Collaboration Costs

For each pair of firms, several factors influence the cost of link formation, γij. The first

determinant is homophily ; existing studies indicate that similarity between firms facilitates

cooperation by generating trust, which lubricates collaboration (Useche et al., 2020). This

encompasses geographic proximity and cultural similarities that lower the barriers to in-

teraction and monitoring costs. Furthermore, under very high environmental uncertainty,

contractual governance may hamper rather than help alliance performance, as bounded ra-

tionality limits the number of contingencies that can be accounted for in a contract Krishnan

et al. (2016). Thus trust is particularly critical in strategic alliances to mitigate relational

hazards, serving as a substitute for costly, complex contracting in environments characterized

by high uncertainty (Kale et al., 2004; Rezaei, 2011).

Furthermore, consistent with the Upper Echelons Theory, it is not merely firms but spe-

cific executives who interpret strategic situations and make alliance decisions based on their
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own cognitive bases and social capital (Hambrick and Mason, 1984). Consequently, execu-

tive characteristics, specifically immigrant status, significantly influence network formation

by altering the topology of search and reducing transaction costs (Levina and Kane, 2009).

Immigrant executives possess “dual embeddedness,” meaning they are simultaneously inte-

grated into the institutional environment of the host country and the social networks of their

home country (Brzozowski and Cucculelli, 2020).

This dual positioning allows immigrant executives to act as “knowledge brokers” who

bridge structural holes between disconnected markets, thereby reducing the information

asymmetry and search frictions associated with finding partners (Lin et al., 2019). While

co-ethnic networks allow for rapid alliance formation through identification-based trust, im-

migrant executives also lower the psychological and transaction costs of forming ties with

dissimilar firms to access non-redundant resources. Thus, we extend the link formation cost

function γij to account for these reductions in search and monitoring costs facilitated by the

executive’s specific network position.

3.2.2 Heterogeneous Spillover and Competition Effects

To understand the heterogeneous spillover and competitive effects within and across different

types of firms, we divide them into ng subgroups. Then the collaboration network A can be

divided into ng × ng blocks:

A =


Ag1g1 Ag1g2 · · · Ag1gn

Ag2g1 Ag2g2 · · · Ag2gn

...
...

. . .
...

Agng1 Agng2 · · · Agngn

 , (9)

where Agh represents the matrix of links between groups g and h. The corresponding

heterogeneous spillover effects can be expressed as λgh. In the same vein, the competition

matrix B can also be partitioned according to the groups, and heterogeneity in ρgh captures

the competition environment rather than their product characteristics.

Allowing for the heterogeneity in the results of the previous section, the optimal R&D

effort and network formation condition is expressed in the following two equations:
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yi =
2ψ

4ψ − ϕ2
ξi +

ϕ

4ψ − ϕ2

k∑
j=1

i∈g,j∈h

λghaijyj −
2ψ

4ψ − ϕ2

k∑
j=1

i∈g,j∈h

ρghbijyj, (10)

log

(
P (aij = 1)

1− P (aij = 1)

)
= ϑ

(
ϕλgh
2ψ

yiyj − γij

)
, for i ∈ g, j ∈ h. (11)

4 Data

4.1 R&D Networks, M&A, and Balance Sheet Information

The R&D alliances from 2003 to 2022 are obtained from the SDC Joint Ventures & Strate-

gic Alliances Database (König et al. (2019);Schilling (2009)). This database is chosen for its

comprehensive collection of inter-firm R&D cooperation, sourced from an extensive range of

resources, including SEC filings, international equivalents, trade publications, and various

news sources. The worldwide coverage enables the study to investigate the roles of immi-

grants in forming international collaborations and distinguish the heterogeneous spillover

effects across US-immigrant-led, US-native-led, and foreign companies. To focus on innova-

tive activities, only the alliances explicitly classified as R&D collaboration are collected.

Figure 1: City-level map of firms and collaborators, with node size reflecting degree centrality.

Over the past two decades, some firms underwent mergers. Following the approach in

König et al. (2019), it is assumed that acquiring firms inherit all the R&D collaborations of

the target firms. To compile a comprehensive dataset on mergers and acquisitions (M&A),

information was sourced from Thomson Reuters’ SDC M&A and S&P Compustat databases,

while financial data was obtained from S&P Compustat and Financial Modeling Prep.
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Initially, there were 8,383 alliances in the dataset. After filtering out non-public firms1,

firms that had been acquired, firms that went bankrupt, and firms without R&D expenditure,

as well as excluding alliances that subsequently involved only a single firm, the final sample

comprised 1,448 alliances globally and 878 within the U.S., involving 1,086 firms worldwide

and 363 U.S. firms. Figure 1 presents the city-level locations of all firms, with the size of

each node representing degree centrality, and several key hub cities labeled. For a breakdown

of the number of firms across different regions, see Table 7.

Figure 2: The largest component of the accumulated R&D networks until 2022. Node
colors represent sectors based on 3-digit SIC codes, while node sizes reflect the number of
collaborations for each firm.

Figure 2 presents the largest connected component of the accumulated R&D collaboration

network of the glable sample. There’s a total of 695 firms. Nodes’ size is proportion to the

degree centrality and color indicates the industry. The top 10 firms in terms of the highest

degree of centrality are labeled, in which most of them are US firms, and all of them are

in the drugs industry. Detailed information regarding these leading 10 firms is outlined in

Table 1. The nodes’ color reflects the industry, almost all of them are high-tech. About one-

half of firms are in the drugs (SIC: 283) sector. The Research, Development, and Testing

Services (SIC: 873) and Electronic Components and Accessories (SIC: 367) are the top 2 and

3 industries.

Figure 3 illustrates the overall trends of newly formed networks for both the global and

U.S. samples from 2003 to 2022. The left panel displays the number of participants in

1According to Bloom et al. (2013), R&D activities are predominantly concentrated among public firms,
thus the sample captures the majority of innovation efforts.
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Figure 3: Descriptive statistics of newly formed alliances from 2003 to 2022. The left panel
shows the number of participants in newly established alliances over time, revealing similar
trends in both global and U.S. samples. The right panel displays the logarithmic degree
distribution, with the linearity of the fitted lines indicating that degree centrality follows a
power-law distribution.

Table 1: Top 10 Firms Ranked by Degree Centrality in the Largest Component

Rank Name Symbol Region SIC Industry Degree

1 Merck Co., Inc. MRK United States 283 Drugs 59
2 Roche Holding AG ROG.SW Switzerland 283 Drugs 52
3 Pfizer Inc. PFE United States 283 Drugs 46
4 Johnson Johnson JNJ United States 283 Drugs 37
5 Bristol-Myers Squibb Company BMY United States 283 Drugs 35
6 GlaxoSmithKline plc GSK.SW United Kingdom 283 Drugs 34
7 Eli Lilly and Company LLY United States 283 Drugs 32
8 Bayer Aktiengesellschaft BAYN.SW Germany 283 Drugs 30
9 Amgen Inc. AMGN United States 283 Drugs 29
10 Sanofi SAN.PA France 283 Drugs 28

newly established alliances over time, showing that both samples exhibit similar patterns.

On average, approximately 130 firms join new collaborations each year. Notably, there are

significant declines around 2009, 2015, and 2021, corresponding to major economic disrup-

tions: the 2008 financial crisis, the surge in mega-mergers in 20142, and the COVID-19

pandemic. These events resulted in ongoing economic uncertainty, influencing global mar-

kets and investment in R&D. The tech sector, in particular, experienced waves of mergers

and acquisitions during these periods, as firms aimed to consolidate and strengthen their

positions in emerging technologies, potentially leading to a reduction in R&D collaborations

as companies prioritized internal integration and the protection of proprietary technologies.

2Emily Liner’s blog on The Harvard Law School Forum on Corporate Governance discusses the key
factors driving the 2014 M&A surge. See: https://corpgov.law.harvard.edu/2016/03/16/whats-behin
d-the-all-time-high-in-ma/.
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The right panel shows the logarithmic degree distribution, which is highly skewed. The

linearity of the fitted lines suggests that the degree centrality follows a power-law distribution,

indicating that the networks are typically sparse, with most firms participating in only a

single collaboration, while a small number of firms are highly active in forming new alliances.

This pattern aligns with Figure 2, which shows that pharmaceutical companies are frequently

involved in such collaborations. The development of new drugs often requires long timelines,

substantial funding, and involves considerable risk, leading these firms to collaborate more

frequently to pool resources and mitigate risk.

Figure 4: The competition matrices B, measured at the 3-digit industry SIC code level,
highlight the top three industries based on the number of firms. The corresponding SIC
codes are displayed on the left.

Table 2: Top 5 Industries

Industry 3-digit SIC Count Rank

World
Drugs 283 418 1
Electronic Components and Accessories 367 67 2
Research, Development, and Testing Services 873 61 3
Surgical, Medical, and Dental Instruments and Supplies 384 43 4
Computer Programming, Data Processing, and Other Computer Related Services 737 41 5

US
Drugs 283 183 1
Electronic Components and Accessories 367 21 2
Laboratory Apparatus and Analytical, Optical, Measuring, and Controlling Instruments 382 19 3
Surgical, Medical, and Dental Instruments and Supplies 384 19 4
Computer Programming, Data Processing, and Other Computer Related Services 737 19 5

Notes: This table presents the top five industries, ranked by the number of firms, for both the global and U.S. samples.
Both samples exhibit a similar pattern, with the pharmaceutical industry and IT-related sectors dominating participation
in R&D collaborations.
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4.2 Entrepreneurs’ Demographic Information

Entrepreneurs in this study are defined as the senior executive officers of the firms. To gather

information about these individuals, the primary source is the annual reports filed with the

Securities and Exchange Commission (SEC), which provide names and brief biographies of

the relevant individuals. This information is further enriched by cross-referencing with firms’

official websites, Wikipedia, LinkedIn, WikiTree, Bloomberg, Encyclopedia.com, NNDB,

WBE, and various news reports.

Due to the occasional unavailability of explicit birthplace information, an inferential

approach is adopted. The location of the universities where these entrepreneurs obtained

their bachelor’s degrees serves as a proxy for inferring their birthplace (Mahroum and Ansari

(2017)). Entrepreneurs who obtained their degrees outside the country where their firm is

located are classified as immigrants. Since some immigrants may arrive young and enroll

in U.S. universities before they launch their careers, Our analysis would not count them

as immigrants, therefore our estimates can be considered a lower bound on immigrants’

contribution to U.S. executive leadership. The born regions for all executives can be found

in Table 8.

To focus on the influence of U.S. immigrants, all the executives of the non-US firms are

assumed born in the country where their firm is located. There are also some supportive

reasons for this assumption: first, compared to other countries, immigrant executives are

much more prevalent in the U.S., particularly in sectors like technology and healthcare

(Mahroum and Ansari (2017)), which are the main sectors for the research sample. This

is because the U.S. has a more diverse and immigrant-friendly environment, while other

countries, such as in Asia and Africa, tend to hire local executives, either due to cultural

and linguistic preferences or more restrictive immigrant policies (Arp et al., 2013; Platonova

and Urso, 2013; Flahaux and De Haas, 2016). In Europe, while other is movement between

countries, cultural similarities often limit the diversity in executive positions. Furthermore,

researches show that European countries, compared to the U.S., had less attractive policies

for highly skilled immigrants and experienced net emigration, resulting in a ‘brain drain’ to

the U.S.(Mahroum, 1999, 2000, 2001; Prato, 2022).

4.3 Summmary Statistics

Table 3 provides summary statistics for all the variables used in this research. The R&D

effort is quantified by the logarithm of R&D expenditure. Collaborator’s R&D efforts are

measured by the sum of the efforts of a firm’s collaborators within the year, while competitors’

R&D efforts are captured by the total R&D expenditure of firms that share the same 3-digit

12

https://www.nndb.com/
https://prabook.com/web/home.html


Table 3: Summary Statistics

Mean SD Median Min Max N

World
Output 19.63 7.61 21.43 0.00 33.34 15,844
Productivity 18.85 4.98 19.79 0.00 30.57 15,322
Collaborators’ Productivity 13.09 33.59 0.00 0.00 541.75 19,703
Competitors’ Productivity 2,459.11 2,525.77 862.20 0.00 7,037.76 19,703
R&D effort 13.44 7.87 16.72 0.00 30.73 15,844
Immigrant Dummy 0.13 0.34 0.00 0.00 1.00 19,703

US
Output 16.62 7.21 18.29 0.00 26.97 5,209
Productivity 19.81 3.82 20.07 0.00 30.57 5,063
Collaborators’ Productivity 13.99 38.85 0.00 0.00 541.75 6,878
Competitors’ Productivity 3,002.28 2,557.04 3,362.15 0.00 7,037.76 6,878
R&D effort 16.60 5.10 17.53 0.00 30.73 5,209

Immigrant Dummy 0.38 0.49 0.00 0.00 1.00 6,878
Female Dummy 0.06 0.13 0.00 0.00 1.00 6,878

Proportion of Executives with Their Highest Degree
No Degree 0.00 0.03 0.00 0.00 0.33 6,878
Bachelor 0.16 0.23 0.00 0.00 1.00 6,878
Master 0.23 0.27 0.14 0.00 1.00 6,878
Doctor 0.20 0.26 0.00 0.00 1.00 6,878

Notes : All financial data are deflated by the CPI and converted to U.S. dollars. Output
is the logarithm of revenue from annual reports, R&D effort is the logarithm of R&D
expenditure, and productivity is time-lagged R&D capital stocks with a 15% depreciation
rate. ipoYear refers to the year of a company’s first public stock offering. The immigrant
dummy equals one if a firm has at least one immigrant executive in a year, and zero
otherwise. Foreign firms are assumed to have no immigrant executives. The female
dummy equals one if at least one female executive is present, and zero otherwise.The last
four variables represent the proportion of executives with the highest academic degrees,
counting only the highest degree held. For example, a Ph.D. is counted as a doctorate,
not a bachelor’s degree.

SIC code, hence identified as competitors. Productivity is assessed using the one-year-lagged

R&D capital stock, which is calculated through the perpetual inventory method based on

the firm’s R&D expenditures with a 15% depreciation rate Bloom et al. (2013).

All financial data are reported in U.S. dollars, with currency translation rates obtained

from The World Bank Group and Fiscal Data. To account for the effects of inflation, and

given that not all countries provide Producer Price Index (PPI) data annually, the financial

data are deflated using the annual average Consumer Price Index (CPI), generally based
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on the Laspeyres formula. The primary source for CPI data is The World Bank Group.

However, CPI data for Taiwan, the European zones, and Russia in 2022 were not available

through this source and were instead obtained from National Statistics, Republic of China

(Taiwan), the European Central Bank, and Trading Economics, respectively.

For the U.S. sample, demographic information on executives is collected. At the firm level,

The immigrant dummy variable is set to one if there is at least one immigrant executive in

the given year, and zero otherwise. Similarly, the female dummy variable is set to one if

there is at least one female executive, and zero otherwise. The last four variables quantify

the proportion of executives holding the highest academic degrees. For instance, if a CEO

possesses both a Ph.D. and a master’s degree, the count of doctorate degree holders increases

by one, but the count of master’s degree holders does not.

5 Identification Strategy

In this section, we specify the econometric model for equations (10) and (11) (and normalizing

ψ = 1
2
and ϕ = 1) for empirical analysis for panel data over time periods T = {1, . . . , t}.

For each firm i at time t, the outcome is a total output yit. The kt-dimensional vectors yt =

(y1t, y2t, . . . , ykt)
′ summarize the outcome variables of kt firms. Let xit be a r-dimensional

row vector containing firm i’s exogenous characteristics, and let the kt×r dimensional matrix

Xt be a collection of such vectors at time t. We capture the dynamic cooperation networks

of firms by t-dimension vector A = (A1, A2, . . . , At), where each At is a kt × kt adjacency

matrix, where each entry aij,t is a binary indicator which equals one if firm i and j announced

an R&D alliance at time t, and zero otherwise. The diagonal of the adjacency matrix is set

to zero to ensure that spillover effects are not confounded with the effects of a firm’s own

characteristics. Similarly, the matrix B captures product market competition, where each

entry Bij equals 1 if firms i and j operate in the same 3-digit SIC industry, and 0 otherwise.

The full competition matrix B is shown in Figure 4, and Table 2 provides descriptions of

the five largest industries in our sample.

5.1 Spatial Auto Regression (SAR) Model

In year t, a firm’s idiosyncratic fixed marinal production cost c̄it = c̄d+ c̄t−βXit−vit, where
c̄t capture the time-specific market shock, vector Xit captures the chacartreisitcs can reduce

the cost, such as .... and vit represents the unobsevables that can influce the cost. Then in

year t, the inverse demand in equation (1) is:

14

https://data.worldbank.org/indicator/FP.CPI.TOTL
https://www.stat.gov.tw/Point.aspx?sid=t.2&n=3581&sms=11480
https://www.stat.gov.tw/Point.aspx?sid=t.2&n=3581&sms=11480
https://www.ecb.europa.eu/stats/macroeconomic_and_sectoral/hicp/html/index.en.html
https://tradingeconomics.com/russia/consumer-price-index-cpi


pit = p̄d + p̄t − yit −
k∑

j=1
i∈g,j∈h

ρghbijyjt, (12)

where p̄t capture the market shocks to the price in year t, then then ξi = p̄d + p̄t − c̄it =

βXit + p̄d + p̄t − c̄d − c̄t + vit. Equation (10) can be specified as:

yit = βXit +
k∑

j=1
i∈g,j∈h

λghaijtyj −
k∑

j=1
i∈g,j∈h

ρghbijyj + ηd + τt + vit, (13)

where ηd = p̄d − c̄d and τt = p̄t − c̄t.

To investigate the influence of immigrant senior executives and global cooperation, we

specify the group g follows this rule: immigrant-led (m), native-led (n), and foreign (f)

firms. Specifically, foreign firms are defined as non-US firms. Both immigrant and native

firms are located in the U.S.; a firm is classified as immigrant-led if at least one senior

executive is an immigrant, and as native-led if none of the senior executives are immigrants.

This classification for U.S. firms may vary over the years due to changes in the composition

of executive officers, while the classification of foreign firms remains the same. Since we want

to understand the influence of immigrants on the global influence, and also want to focus on

the situation within the US. In the global sample, we have three groups; in the US sample,

we only have 2 groups, m and n. In vector form, the SAR model for the whole sample can

be specified as:

yt = Wt(Θ)yt +Xtβββ + η + ℓτt +Vt, (14)

Vt ∼ i.i.d.N (0, σ2Ikt), t = 1, . . . , T,

Wt(Θ) = At(Λ) +B(P)

=

λmmA
mm
t λmnA

mn
t λmfA

mf
t

λnmA
nm
t λnnA

nn
t λnfA

nf
t

λfmA
fm
t λfnA

fn
t λffA

ff
t

+

ρmmB
mm ρmnB

mn ρmfB
mf

ρnmB
nm ρnnB

nn ρnfB
nf

ρfmB
fm ρfnB

fn ρffB
ff

 ,
with η a dt-dimensional vector, and ℓ a kt-dimensional vector of ones; N represents a

multivariate normal distribution of dimension kt, and Ikt is a kt-dimension identity matrix.

It is important to note that the interpretations of λgh and λhg differ. For example. λnm

quantifies the average effects from immigrant-led to native-led firms, whereas λmn measures
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the effects from native-led to immigrant-led firms. The meaning of for each ρgh follows a

similar logic.

5.2 Network Formation Model

In the network formation process, the link-specific cost is specified as γijt = γ0 + γt − Γ′
ijtψψψ.

Here, γ0 captures the baseline cost of collaboration, and γt represents time-variant structural

costs common to all firms (e.g., macroeconomic conditions). The term Γijt is a kc-dimensional

vector of dyadic characteristics, such as executive demographics and homophily measures,

that reduce the effective cost of link formation. Then equation (11) can be specified as:

log

(
P (aij = 1)

1− P (aij = 1)

)
= ϑ(λghyiyj + Γijtψψψ − γ0 − γt), for i ∈ g, j ∈ h. (15)

In this study, the vector of regressors Γijt is specified to capture three distinct drivers of

network formation: executive demographics, network structural dependence, and homophily.

First, we account for executive demographics by including the binary indicators Immigrant t

and Femalet, which take the value of 1 if at least one firm in the pair (i, j) employs immigrant

or female executives in year t, respectively, and 0 otherwise. Second, we model endogenous

network structural effects. To capture relationship persistence, we include the binary variable

PriorTie ijt, which equals 1 if firms i and j have formed an R&D alliance in any year prior

to t. To capture triadic closure mechanisms, we include SharedPartner ijt, which equals 1 if

the firm pair has shared a common alliance partner prior to or during year t.

Third, we examine homophily—the tendency for firms to collaborate with similar part-

ners—measured using the absolute difference between firm attributes, |xit − xjt|. In this

framework, a negative coefficient suggests that firms with similar characteristics are more

likely to partner. We capture social ties using SameOrigin ijt and SameUniversity ijt, which

equal 1 if at least one pair of executives across firms i and j share the same country of

birth or graduated from the same university, respectively. Geographic and industrial prox-

imity are captured by SameCity ij and SameIndustry ij. Operational differences are mea-

sured by variables denoted with the prefix Diff , such as DiffOutput ij,t−1, DiffEffort ij,t−1,

and DiffProd ij,t−1, representing the disparity in output levels, R&D effort, and productivity,

respectively, in the previous fiscal year. Finally, we control for human capital differences

using variables DiffEduB ijt and DiffEduG ijt, which measure the absolute difference in the

proportion of executives holding a bachelor’s and graduate (including master’s and doctoral)

degree between the two firms.
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6 Results

6.1 Spatial Auto Regression (SAR) Model

Table 4 presents the estimation results for the world sample. The first four models explore

the overall externalities of cooperation and competition, while the last three models provide

finer-grained details by examining heterogeneous peer effects across three types of firms.

Model (1) serves as the baseline and does not include any controls or fixed effects. The

subsequent models all incorporate both year and industry fixed effects, captured by the 3-

digit SIC code. Models (2) and (5) use the original observation, denoted as W × y, while

Models (3) and (6) utilize W×X as the IV. Finally, Models (4) and (7) employ Ŵ×X as

the IV.

The overall technology spillover effects λ are significant across all models, suggesting

that firms’ research efforts are positively influenced by their collaborators’ efforts. This may

indicate that collaborative firms share resources, information, and reduce innovation risks,

fostering a robust ecosystem for research and innovation. Before adding fixed effects, ρ is

significant but its sign is misaligned with expectations, indicating an upward bias. After ac-

counting for time and firm-specific influences, the true impact of rivals’ R&D efforts emerges.

The negative sign of ρ reflects the intense competition in the research race, potentially due

to limited market resources such as capital and talent. Notably, the magnitude of spillover

effects surpasses that of competition effects, suggesting that despite resource competition,

firms with more active collaborators are likely to be more confident and ambitious in inno-

vation.

Upon disaggregating the homogeneous effect into distinct categories, it becomes clear

that immigrant-led firms make a substantial contribution to native-led firms. Given that the

variables are expressed in logarithmic form, the coefficient λnm = 0.4 indicates that a one

percent increase in R&D spending by immigrant-led firms leads to a 0.4% increase in the

output of native-led firms. This significant impact is largely due to the prominent presence

of immigrants within influential firms, especially in critical sectors such as pharmaceuticals

and information technology.

This trend is consistent with historical patterns. In the 19th century, factors like political

and economic instability in Europe, religious and political persecution, and a high demand for

skilled labor in the U.S., combined with the freedom and opportunities offered by the country,

made the U.S. a prime destination for European scientists and entrepreneurs. Prominent

examples include pharmaceutical and chemical companies such as Pfizer, Merck & Co., and

DuPont, all founded by immigrants. Following World War II, the U.S. continued to attract

global talent, supported by substantial government funding and leading research institutions
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Table 4: Regression Results of the SAR Model (World)

Homogeneous Spillover Heterogeneous Spillover

Exo Net Exo Net IV (Exo Net) 2IV (Endo Net) Exo Net IV (Exo Net) 2IV (Endo Net)
(1) (2) (3) (4) (5) (6) (7)

λ .0398*** .0296*** .0303*** .0470***
(.0015) (.0024) (.0014) (.0028)

λmm .0416*** .0407*** .0293
(.0065) (.0072) (.0359)

λmn .0338*** .0393*** -.0811
(.0094) (.0138) (.1949)

λmf .0299*** .0306*** .0856**
(.0040) (.0044) (.0429)

λnm .0670*** .0662*** .4237***
(.0074) (.0113) (.1093)

λnn .0401* .0456** .3249***
(.0206) (.0216) (.1178)

λnf .0206*** .0225*** -.1663***
(.0046) (.0069) (.0556)

λfm .0270*** .0273*** .0841***
(.0037) (.0051) (.0318)

λfn .0288*** .0272*** -.0592
(.0065) (.0097) (.0622)

λff .0221*** .0230*** .0308
(.0030) (.0027) (.0244)

ρ -.0010*** -.0005*** -.0004*** -.0003***
(.0000) (.0001) (.0001) (.0001)

ρmm .0045*** .0045*** .0020
(.0009) (.0009) (.0033)

ρmn .0013 .0019 -.0026
(.0021) (.0022) (.0103)

ρmf -.0036*** -.0034*** -.0010
(.0008) (.0007) (.0033)

ρnm .0036** .0034*** -.0151***
(.0013) (.0010) (.0047)

ρnn -.0060 -.0020 -.0550***
(.0044) (.0023) (.0129)

ρnf -.0025* -.0029*** .0143***
(.0012) (.0007) (.0043)

ρfm .0020*** .0007 .0030
(.0007) (.0007) (.0025)

ρfn .0076*** .0049*** .0157**
(.0013) (.0016) (.0067)

ρff -.0029*** -.0015*** -.0037
(.0008) (.0006) (.0025)

βp .3760*** .3748*** .3544*** .3660*** .3646*** .3538***
(.0224) (.0135) (.0139) (.0222) (.0128) (.0148)

βe -.0843*** -.0845*** -.0926*** -.0365*** -.0370*** -.0477***
(.0120) (.0082) (.0083) (.0103) (.0078) (.0090)

Intercept 21.3793*** 13.6288*** 13.7167*** 14.3597*** 12.7145*** 13.0053*** 13.6024***
(.0795) (2.4103) (2.4103) (2.4247) (2.2796) (2.2824) (2.5971)

Fixed Effects No Yes Yes Yes Yes Yes Yes

R2 .1385 .3945 .3944 .3878 .4604 .4597 .3499

Adj.R2 .1384 .3892 .3892 .3825 .4552 .4545 .3436
Num.obs. 15844 15322 15322 15322 15322 15322 15322

Notes: The dependent variable is the logarithm of the firm’s output level. Fixed effects include both time and industry fixed effects.
Standard errors are shown in parentheses. Significance levels are indicated as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. The
parameter λ measures the technology spillover effects, while ρ captures substitution effects. Subscripts on these parameters indicate
interactions across different groups; for example, λmn quantifies the spillover from immigrant-led to native-led firms. βp represents
the productivity impact, measured by the logarithm of lagged R&D stock, and βe quantifies the effect of effort level, also in logarithmic
terms, represented by R&D expenditure.

like Stanford University and the University of California system. This influx contributed

to creating a fertile environment for technological innovation, especially in the Information

and Communications Technology sector, reflecting a longstanding tradition of leveraging

immigrant expertise to enhance domestic capabilities and drive sectoral growth (Arkolakis

et al. (2020)).

The Immigration and Naturalization Act of 1965, which eliminated nationality-based

quotas, along with subsequent favorable policies for venture capital and tech entrepreneur-
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ship, greatly facilitated the development of Silicon Valley. This region attracted a diverse

and highly skilled immigrant workforce, contributing significantly to its growth and innova-

tion (Wadhwa et al. (2007)). Today, many leading U.S. firms, from those established in the

historical context of the healthcare sector to those emerging during the digital revolution in

Silicon Valley, have been shaped by the active involvement of immigrants in their establish-

ment and ongoing success. These firms bring extensive networks, resources, and experience,

influencing local firms through substantial technology spillover.

Additionally, in Model (6), the positive significance of λmf and λnf illustrates how foreign

firms encourage innovation efforts among U.S. firms, highlighting the beneficial impacts of

globalization and the importance of international cooperation. Recalling the link formation

model, both IM and SameBorn showed significant positive effects, indicating the crucial role

of immigrants in fostering international collaborations and stimulating innovations, which

also yield advantages for local U.S. firms. Furthermore, the positive and significant λfm

suggests that collaborations between immigrant and foreign firms are mutually beneficial for

innovation.

Table 5: Regression Results of the SAR Model (US)

Homogeneous Spillover Heterogeneous Spillover

Exo Net Exo Net IV (Exo Net) 2IV (Endo Net) Exo Net IV (Exo Net) 2IV (Endo Net)
(1) (2) (3) (4) (5) (6) (7)

λ .0469*** .0331*** .0338*** .0551***
(.0020) (.0041) (.0019) (.0047)

λmm .0596*** .0593*** .0893***
(.0087) (.0061) (.0242)

λmn .0563*** .0648*** .1931**
(.0118) (.0127) (.0783)

λnm .0705*** .0713*** .2036***
(.0074) (.0103) (.0543)

λnn .0653*** .0739*** .1609
(.0215) (.0206) (.1042)

ρ -.0012*** -.0004** -.0004*** -.0003*
(.0000) (.0002) (.0002) (.0002)

ρmm .0009 .0010 .0016**
(.0009) (.0007) (.0007)

ρmn -.0051* -.0050*** -.0055***
(.0029) (.0016) (.0018)

ρnm .0007 -.0002 .0005
(.0011) (.0007) (.0009)

ρnn -.0074** -.0056*** -.0064***
(.0029) (.0017) (.0020)

βp .2927*** .2912*** .2310*** .2973*** .2940*** .2310***
(.0456) (.0349) (.0373) (.0482) (.0347) (.0379)

βe .2912*** .2899*** .2540*** .2809*** .2827*** .2331***
(.0274) (.0255) (.0269) (.0264) (.0256) (.0282)

Intercept 19.4226*** 9.0868*** 9.0868*** 11.2472*** 9.7560*** 13.0053*** 12.2709***
(.1317) (2.3375) (2.3375) (2.4029) (2.3273) (2.2824) (2.4639)

Fixed Effects No Yes Yes Yes Yes Yes Yes

R2 .2631 .4251 .4251 .4096 .4292 .4292 .3806

Adj.R2 .2628 .4172 .4172 .4015 .4206 .4206 .3713
Num.obs. 5209 5063 5063 5063 5063 5063 5063

Notes: The dependent variable is the logarithm of the firm’s output level. Fixed effects include both time and industry fixed effects.
Standard errors are shown in parentheses. Significance levels are indicated as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. The
parameter λ measures the technology spillover effects, while ρ captures substitution effects. Subscripts on these parameters indicate
interactions across different groups; for example, λmn quantifies the spillover from immigrant-led to native-led firms. βp represents
the productivity impact, measured by the logarithm of lagged R&D stock, and βe quantifies the effect of effort level, also in logarithmic
terms, represented by R&D expenditure.
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When examining the interactions between U.S. firms, a similar pattern emerges as de-

tailed in Table 5. The benefits of cooperation are shown to outweigh the competitive losses,

which is evident from the consistently positive and larger magnitude of λ compared to ρ.

Additionally, including year and firm fixed effects is crucial for mitigating omitted-variable

bias. A closer examination of the influence of immigrant-led on purely native-led firms,

measured by λnm, reveals a significant stimulation of innovation by immigrant firms.

6.2 Link Formation Model

Table 6 reports the estimation results for the network formation model. We focus our

discussion on the fully specified models in Column (4) for the Global sample and Column

(8) for the US sample.

6.2.1 Reduced-Form Estimates

We begin by interpreting the raw logistic regression coefficients in terms of odds ratios, which

describe the likelihood of link formation conditional on observed covariates. The presence

of immigrant executives (IM ) is a strong predictor of collaboration in both samples. In the

Global sample, having an immigrant executive increases the odds of forming an R&D alliance

by approximately 66% (exp(0.5082) ≈ 1.66). In the US sample, this effect is substantially

larger, with the presence of immigrant executives roughly tripling the odds of collaboration

relative to the baseline (exp(1.1120) ≈ 3.04).

Regarding social ties, the Global sample exhibits significant national homophily: sharing

the same country of origin increases the odds of collaboration by 78% (exp(0.5776) ≈ 1.78).

Conversely, the US sample displays a tendency toward heterophily; sharing a country of

origin decreases the odds of collaboration by approximately 49% (exp(−0.6631) ≈ 0.51),

suggesting that immigrant executives in the US are more likely to bridge structural holes

between diverse groups rather than cluster within ethnic enclaves.

6.2.2 Identification of Structural Parameters

To move from likelihoods to economic preferences, we must account for the unobserved

heterogeneity in each sample. The estimation results for the link formation models are

presented in Table 6. From equation (15), we can recover the structural noise parameter

ϑ by dividing the estimated coefficient of the interaction term yiyj by the spillover effect λ

obtained from the second-stage outcome equation. Since we do not assume heterogeneity in

the dyadic characteristics regarding the cost deduction, we use the homogeneous spillover λ
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given in column (4) of Table 4 and Table 5, which equals 0.0470 and 0.0551 for the Global

and US samples, respectively.

Given that the logistic regression coefficients for yiyj are 0.0076 (column (4)) and 0.0080

(column (8)) for the Global and US samples respectively, the estimated inverse noise param-

eter is ϑ̂ ≈ 0.162 for the Global sample and ϑ̂ ≈ 0.145 for the US sample. The parameter ϑ

serves as the inverse temperature or sensitivity parameter in the network formation process,

governing the trade-off between deterministic economic incentives and random idiosyncratic

shocks (Hsieh et al., 2025b; Mele, 2017). A higher ϑ implies that firms’ linking decisions

are highly sensitive to the marginal profits defined by the model (high rationality), whereas

as ϑ → 0, decisions become purely random. Our estimated values (0.145–0.162) are lower

than those typically found in R&D network literature (e.g., ≈ 1.4 in Hsieh et al. (2025b)),

suggesting that in our specific sample, the formation of collaborations is characterized by a

significant degree of stochasticity or unobserved friction. While the synergy effect (yiyj) is

statistically significant, the relatively low ϑ indicates that idiosyncratic factors (noise) play a

substantial role in driving specific link formation decisions alongside the structural economic

incentives.

6.2.3 Structural Interpretations

Accounting for the higher level of noise in the US sample (ϑ̂US < ϑ̂Global) reveals that the

raw odds ratios understate the true magnitude of the structural preferences. We calculate

the structural parameters as ψ̂ = β̂/ϑ̂ to represent the underlying marginal utility of link

formation.

Immigrant Effects and Homophily: The structural impact of immigrant executives

is notably more pronounced than the reduced-form estimates suggest. In the Global sample,

the presence of immigrant executives generates a structural utility gain of approximately

3.14 (≈ 0.508/0.162). In the US, correcting for the high market volatility reveals a massive

structural premium of 7.67 (≈ 1.112/0.145). This implies that in the underlying payoff

structure of US R&D networks, firms place a premium on the connectivity provided by

immigrant executives that is more than double the global average.

Similarly, the structural divergence in homophily is stark. In the Global sample, sharing

a country of origin yields a positive utility of 3.57, reducing the costs of coordination. In the

US, the structural penalty for sharing an origin is -4.57, confirming that US-based immigrant

executives actively seek diversity (heterophily). However, this does not imply a lack of social

capital in the US; rather, the mechanism shifts from national origin to education. The

structural utility of attending the same university (SameUniversity) in the US is 3.55, which

effectively substitutes for the national-origin ties observed globally.
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Network Structure and Other Controls: Finally, structural dependencies remain

the dominant drivers of network formation across both samples. Relationship persistence

(PriorTie) confers the largest utility advantage, with structural parameters of 9.77 (Global)

and 8.20 (US), reflecting the high value of established trust. Triadic closure (SharedPartner)

also provides a substantial and consistent utility gain of 7.61 (Global) and 7.32 (US), confirm-

ing that having common partners serves as a universal mechanism to mitigate information

asymmetry.

Table 6: Regression Results of Network Formation Model

Global Sample US Sample

(1) (2) (3) (4) (5) (6) (7) (8)

Immigrant .9700*** .7546*** .5438*** .5082*** 2.5276*** 1.5260*** 1.0849*** 1.1120***
(.0559) (.0574) (.0633) (.0635) (.3092) (.3107) (.3303) (.3310)

SameOrigin .6341*** .8060*** .6188*** .5776*** -.2986 -.6079 -.8619** -.6631*
(.0589) (.0604) (.0693) (.0696) (.3404) (.3864) (.3903) (.3992)

yiyj .0052*** .0077*** .0076*** .0057*** .0080*** .0080***
(.0002) (.0003) (.0003) (.0006) (.0007) (.0007)

SameCity .6379*** .6547*** .3546 .3664
(.1437) (.1439) (.4560) (.4599)

SameIndustry 1.7946*** 1.8000*** 1.9582*** 1.9403***
(.0650) (.0650) (.1674) (.1666)

PriorTie 1.5490*** 1.5833*** 1.2120*** 1.1890***
(.1269) (.1276) (.2812) (.2856)

SharedPartner 1.0595*** 1.2327*** .8455*** 1.0613***
(.0952) (.0965) (.2057) (.2117)

DiffOutput .0779*** .0805*** .0848*** .0956***
(.0059) (.0060) (.0125) (.0128)

DiffEffort .0062 .0112* -.0292 -.0385
(.0055) (.0059) (.0254) (.0277)

DiffProd -.0097 -.0242*** .0873*** .0653**
(.0060) (.0065) (.0259) (.0284)

SameUniversity .5884*** .5145***
(.1633) (.1639)

DiffEduB .5937 .4865
(.4601) (.4538)

DiffEduG -1.6532*** -1.6291***
(.3979) (.3940)

Female .0219 .2123
(.1549) (.1584)

Intercept (γ0) -9.3958*** -11.1004*** -12.9928*** -11.9213*** -10.3568*** -10.9060*** -12.5510*** -11.3272***
(.0395) (.1128) (.1674) (.2188) (.4547) (.5177) (.6077) (.6668)

Time Effect (γt) No No No Yes No No No Yes
AIC 27463.8 23908.3 20678.5 20159.6 4291.6 3778.3 3149.9 3063.1
BIC 27506.2 23963.2 20828.8 20555.8 4327.6 3824.4 3321.6 3440.8
Log Likelihood -13728.9 -11950.1 -10328.2 -10050.8 -2142.8 -1885.2 -1560.0 -1498.6
Deviance 27457.8 23900.3 20656.5 20101.6 4285.6 3770.3 3119.9 2997.1
Num. obs. 10190900 6880712 6339482 6339482 1207560 752532 691242 691242

Notes: The dependent variable is a dummy indicating whether two firms establish an R&D collaboration or not. Significance levels are indicated
as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are shown in parentheses.

7 Conclusion

This study bridges the gap between the economics of innovation, network science, and high-

skilled migration. While previous literature has separately established that R&D collabo-

rations enhance productivity and that immigrants contribute to patenting, we provide the

first structural evidence of the mechanism binding these two forces: immigrant executives

act as critical architects of the R&D networks that facilitate knowledge diffusion.
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By employing a higher-order spatial autoregressive (SAR) model coupled with an en-

dogenous network formation process, we overcome the identification challenges inherent in

observational network data. Our structural estimation yields three novel insights regarding

the dynamics of innovation.

First, we identify a massive ”structural premium” associated with immigrant executives

in the formation of R&D alliances. After correcting for unobserved market volatility, we find

that the presence of immigrant executives reduces the friction of link formation by a factor

of 3.14 globally and 7.67 in the United States. This indicates that in the US innovation

ecosystem, immigrant executives are not merely participants but ”super-connectors” who

significantly lower the transaction costs of collaboration.

Second, our results uncover a fundamental divergence in social capital mechanisms be-

tween the global and US markets. Globally, R&D networks are driven by national homophily:

firms connect with those of the same origin to minimize coordination costs. In contrast, the

US market exhibits structural heterophily: immigrant-led firms in the US actively bridge

structural holes by partnering with diverse firms, relying on university alumni networks

rather than ethnic enclaves to establish trust. This suggests that the US assimilation model

uniquely positions immigrant talent to facilitate cross-group knowledge transfer.

Third, regarding firm performance, we confirm that the network structure defined by

these choices has significant economic consequences. We find robust evidence of positive

R&D spillovers, where the connectivity facilitated by immigrant executives leads to tangible

gains in firm output. Specifically, immigrant-led and foreign firms generate net positive

externalities for native-led firms, dispelling the zero-sum view of high-skilled labor.

These findings carry profound policy implications. They suggest that immigration pol-

icy is, de facto, innovation policy. Restrictions on high-skilled immigration do not merely

subtract individual workers from the labor force; they degrade the structural integrity of

the R&D network itself, severing the links that drive aggregate productivity growth. Future

research should extend this framework to examine the dynamic evolution of these networks

over longer time horizons, particularly how shock-induced changes to immigration policy

reconfigure the topology of global innovation.

23



8 Acknowledgment

The authors are grateful for the advice received from Andrei Barbos, Vincent Boucher,

Bobby W. Chung, William Greene, and Michael D. König, as well as for the support from

the Department of Economics. Appreciation is also given for the data collection efforts

of Rezuanul Huq Rafi, Mohaimin Chowdhury, Safayet Hossain Tushar, Albab Amin Beky,

Fatema Sobnam Moumita, Md Ifteker Chowdhury, MD. Borhan Uddin, Md. Nafiz Imtiaz,

MD. Sadik Rahman, Rahul Barua, and Shahida Aktar.

References

Akcigit, Ufuk, Santiago Caicedo, Ernest Miguelez, Stefanie Stantcheva, and Valerio Sterzi

(2018) “Dancing with the Stars: Innovation through Interactions,”Technical report, Na-

tional Bureau of Economic Research.

Anderson, Simon P., Andre de Palma, and Jacques-Francois Thisse, Discrete Choice Theory

of Product Differentiation.

Arkolakis, Costas, Sun Kyoung Lee, and Michael Peters (2020) “European immigrants and

the United States’ rise to the technological frontier,” in 2019 Meeting Papers, 1420.

Arp, Frithjof, Kate Hutchings, and Wendy A. Smith (2013) “Foreign executives in local

organisations: An exploration of differences to other types of expatriates,” Journal of

Global Mobility, 1 (3), 312–335.

Bernstein, Shai, Rebecca Diamond, Abhisit Jiranaphawiboon, Timothy McQuade, and Beat-

riz Pousada (2022) “The contribution of high-skilled immigrants to innovation in the

United States,”Technical report, National Bureau of Economic Research.

Bloom, Nicholas, Mark Schankerman, and John Van Reenen (2013) “Identifying technology

spillovers and product market rivalry,” Econometrica, 81 (4), 1347–1393.

Bolzani, Daniela and Alessandra Scandura (2024) “The role of collaboration networks for

innovation in immigrant-owned new technology-based firms,” The Journal of Technology

Transfer, 49 (4), 1203–1233.

Brzozowski, Jan and Marco Cucculelli (2020) “Transnational Ties and Performance of Im-

migrant Firms: Evidence from Central Italy,” International Journal of Entrepreneurial

Behavior & Research, 26 (8), 1787–1806, 10.1108/IJEBR-10-2019-0582.

24

http://dx.doi.org/10.1108/IJEBR-10-2019-0582


Flahaux, Marie-Laurence and Hein De Haas (2016) “African migration: trends, patterns,

drivers,” Comparative migration studies, 4, 1–25.

Ganguli, Ina and Megan MacGarvie (2025) “International Students, Immigration Policies

and Implications for Innovation,”Technical report, National Bureau of Economic Research.

Glennon, Britta (2024) “Skilled Immigrants, Firms, and the Global Geography of Innova-

tion,” Journal of Economic Perspectives, 38 (1), 3–26.
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9 Appendix

9.1 Tables

Table 7: Firms Count by Region

Name Code Count Rank Name Code Count Rank

United States US 348 1 Norway NO 5 20
Japan JP 136 2 Finland FI 4 21
China CN 92 3 Spain ES 4 22
Canada CA 57 4 Brazil BR 2 23
United Kingdom GB 46 5 Italy IT 2 24
South Korea KR 43 6 Thailand TH 2 25
Australia AU 41 7 Austria AT 1 26
France FR 32 8 Hungary HU 1 27
Germany DE 31 9 Indonesia ID 1 28
Taiwan TW 26 10 Luxembourg LU 1 29
India IN 24 11 Malaysia MY 1 30
Sweden SE 20 12 New Zealand NZ 1 31
Switzerland CH 17 13 Philippines PH 1 32
Israel IL 16 14 Poland PL 1 33
Netherlands NL 15 15 Russia RU 1 34
Denmark DK 11 16 Singapore SG 1 35
Ireland IE 10 17 Virgin Islands, British VG 1 36
Hong Kong HK 8 18 South Africa ZA 1 37
Belgium BE 7 19
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Table 8: Origins of All Senior Executives in US Firms

Origin Count Proportion (%) Rank Origin Count Proportion (%) Rank

US 46,205 81.26 1 CO 20 0.035 44
GB 2,066 3.634 2 FI 20 0.035 44
IN 1,481 2.605 3 PH 18 0.032 45
CA 815 1.433 4 RO 18 0.032 45
FR 746 1.312 5 Sl 17 0.030 46
DE 575 1.011 6 PR 14 0.025 47
IT 380 0.668 7 TG 14 0.025 47
CN 370 0.651 8 HU 13 0.023 48
AU 349 0.614 9 PS 13 0.023 48
IL 303 0.533 10 SY 13 0.023 48

ES 210 0.369 11 MF 12 0.021 49
ZA 210 0.369 11 ET 11 0.019 50
BR 205 0.361 12 BD 10 0.018 51
MX 181 0.318 13 DO 10 0.018 51
IE 180 0.317 14 MA 10 0.018 51
NL 176 0.310 15 TZ 10 0.018 51
JP 170 0.299 16 ZW 10 0.018 51
IR 158 0.278 17 MY 9 0.016 52
BE 133 0.234 18 BG 8 0.014 53
RU 129 0.227 19 IS 8 0.014 53

SE 122 0.215 20 LR 8 0.014 53
CH 105 0.185 21 NP 8 0.014 53
KR 103 0.181 22 SK 8 0.014 53
AR 102 0.179 23 CY 7 0.012 54
TR 100 0.176 24 AM 6 0.011 55
PL 88 0.155 25 CR 6 0.011 55
TW 78 0.137 26 MT 5 0.009 56
LB 75 0.132 27 PA 4 0.007 57
KP 74 0.130 28 UM 4 0.007 57
GR 58 0.102 29 CM 3 0.005 58

EG 54 0.095 30 SI 3 0.005 58
DK 51 0.090 31 SL 3 0.005 58
AT 49 0.086 32 UK 3 0.005 58
NZ 45 0.079 33 BY 2 0.004 59
SG 44 0.077 34 LK 2 0.004 59
CU 40 0.070 35 MK 2 0.004 59
HK 38 0.067 36 SA 2 0.004 59
PK 35 0.062 37 ST 2 0.004 59
CL 30 0.053 38 UY 2 0.004 59
VN 30 0.053 38 AL 1 0.002 60

SZ 29 0.051 39 HR 1 0.002 60
VE 28 0.049 40 JM 1 0.002 60
PT 24 0.042 41 LT 1 0.002 60
NG 23 0.040 42 RS 1 0.002 60
NO 23 0.040 42 TH 1 0.002 60

UA 22 0.039 43 Total: 56,856

Note: The abbreviated name for each origin follows the ISO 3166-1 alpha-2 code standard. For
further information, please visit https://www.isin.net/country-codes/.
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Table 9: Sample Company Profile

Year Symbol Company Name Country State City Latitude1 Longitude1 SIC2 Code SIC2 Group

2003 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2004 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2005 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2006 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2007 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2008 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2009 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2010 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2011 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2012 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2013 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2014 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2015 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2016 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2017 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2018 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2019 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2020 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2021 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General
2022 PFE Pfizer Inc. US NY New York 40.7127281 -74.0060152 2834 Drug Manufacturers—General

1 The latitude and longitude coordinates have been retrieved via the Google Maps API.
2 The Standard Industrial Classification (SIC) is a system used to classify industries by a four-digit code. This system
was originally developed in the United States in the 1930s to facilitate the collection, presentation, and analysis of
statistical data related to businesses and industries. The classification is based on the primary type of economic
activity a company engages in.
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Table 10: Sample Company Profile Continue 1

Year Symbol1 CoB2 N F3 Edu N4 Edu B5 Edu M6 Edu D7 University8 N ex9

2003 PFE US 0 0 1 0 1 Georgetown University School of Medicine; Tufts University; Har-
vard University

2

2004 PFE CA;US 0 0 0 0 2 University of British Columbia; Stanford Business School; Tufts
University; Harvard University

2

2005 PFE CA;US 0 0 0 0 2 University of British Columbia; Stanford Business School; Tufts
University; Harvard University

2

2006 PFE US;GB 0 0 1 3 2 New York University Stern School of Business; Stern School of
Business; Oakland/Michigan State University; St. John’s Univer-
sity; St. Peter’s College; Imperial College London; Boston Col-
lege; University of New Hampshire; Princeton University; Heriot-
Watt University; University of Edinburgh

6

2007 PFE US;GB 0 0 1 3 2 New York University Stern School of Business; Stern School of
Business; Oakland/Michigan State University; St. John’s Univer-
sity; St. Peter’s College; Imperial College London; Boston Col-
lege; University of New Hampshire; Princeton University; Heriot-
Watt University; University of Edinburgh

6

2008 PFE US 0 0 0 0 1 Stanford University; University of California, Berkeley 1
2009 PFE US;GB 1 0 2 1 0 St. John’s University; St. Peter’s College; Johns Hopkins Univer-

sity; Howard University Medical School; Imperial College London
3

2010 PFE US;GB;SE 0 0 2 1 1 St. John’s University; St. Peter’s College; Albany College of
Pharmacy and Health Sciences; Imperial College London; Univer-
sity of Lund

4
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Table 11: Sample Company Profile Continue 2

Year Symbol1 CoB2 N F3 Edu N4 Edu B5 Edu M6 Edu D7 University8 N ex9

2011 PFE US;GB;SE 1 0 3 1 2 Wesleyan University; Yale Law School; Carnegie Mellon Univer-
sity; St. John’s University; St. Peter’s College; Albany College
of Pharmacy and Health Sciences; Imperial College London; Uni-
versity of Lund

6

2012 PFE US;GB;SE 1 0 2 1 2 Wesleyan University; Yale Law School; St. John’s University; St.
Peter’s College; Albany College of Pharmacy and Health Sciences;
Imperial College London; University of Lund

5

2013 PFE US;GB;SE;FR 1 0 2 3 2 Wesleyan University; Yale Law School; St. John’s University;
St. Peter’s College; Albany College of Pharmacy and Health Sci-
ences; Imperial College London; Glasgow University; Strathclyde
Graduate Business School; University of Lund; Paris Descartes
University; University of Paris XII

7

2014 PFE US;GB;SE 0 0 2 2 1 St. John’s University; St. Peter’s College; Albany College of
Pharmacy and Health Sciences; Imperial College London; Glas-
gow University; Strathclyde Graduate Business School; University
of Lund

5

2015 PFE US;GB;SE 0 0 2 2 1 St. John’s University; St. Peter’s College; Albany College of
Pharmacy and Health Sciences; Imperial College London; Glas-
gow University; Strathclyde Graduate Business School; University
of Lund

5

2016 PFE GR;US;GB;SE 0 0 2 2 2 Aristotle University of Thessaloniki; St. John’s University; St.
Peter’s College; Albany College of Pharmacy and Health Sciences;
Imperial College London; Glasgow University; Strathclyde Grad-
uate Business School; University of Lund

6

2017 PFE GR;US;GB;SE 0 0 1 2 2 Aristotle University of Thessaloniki; St. John’s University; St.
Peter’s College; Imperial College London; Glasgow University;
Strathclyde Graduate Business School; University of Lund

5
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Table 12: Sample Company Profile Continue 3

Year Symbol1 CoB2 N F3 Edu N4 Edu B5 Edu M6 Edu D7 University8 N ex9

2018 PFE GR;US;GB;SE 0 0 1 2 2 Aristotle University of Thessaloniki; St. John’s University; St.

Peter’s College; Imperial College London; Glasgow University;

Strathclyde Graduate Business School; University of Lund

5

2019 PFE GR;US;GB;SE 0 0 1 2 2 Aristotle University of Thessaloniki; St. John’s University; St.

Peter’s College; Imperial College London; Glasgow University;

Strathclyde Graduate Business School; University of Lund

5

2020 PFE ZA;US;GB;SE 1 0 0 3 1 University of Cape Town; Cornell University; St. John’s Univer-

sity; St. Peter’s College; Glasgow University; Strathclyde Gradu-

ate Business School; University of Lund

4

2021 PFE ZA;US;GB;SE 1 0 1 3 1 University of Cape Town; Cornell University; Cornell Law School;

St. John’s University; St. Peter’s College; Glasgow University;

Strathclyde Graduate Business School; University of Lund

5

2022 PFE ZA;US;SE 2 0 0 3 2 University of Cape Town; Cornell University; Kansas State Uni-

versity; Babcock Graduate School of Management at Wake Forest

University; St. John’s University; St. Peter’s College; University

of Lund; Harvard University; Yale University

5

1 A ticker symbol uniquely identifies a publicly traded company.
2 Countries of birth for the senior executives.
3 Total count of female executives.
4 Number of executives without any college-level degree.
5 Number of executives whose highest degree is bachelor.
6 Number of executives whose highest degree is master, including MBA.
7 Number of executives holding doctoral degree, including MD, JD, and PhD.
8 Universities attended by the executives.
9 Overall number of executives.
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9.2 Endogeneity of the Spatial Lag3

In the SAR model, the spatial lag Wy (where W is the spatial weight matrix and y is the

outcome vector) introduces endogeneity because Wy is influenced by y, which is also an

endogenous component of the model. This reciprocal causation makes Wy correlated with

the error term V, violating the classical assumptions required for ordinary least squares

(OLS) regression.

The SAR model is expressed as:

y = ρWy +Xβ +V, where V ∼ N (0, σ2I) (A1)

In this framework, Wy is referred to as the spatial lag, ρ is the spatial autoregressive

parameter, which is often interpreted as representing spillover effects. The multiplier effect

can be quantified as 1
1−ρ

Lee (2023). The matrix X = (x⊤
1 , . . . ,x

⊤
n ) represents an n × k

matrix of observations on k exogenous variables, β is a k-dimensional vector of coefficients,

and V = (ϵ1, . . . , ϵn)
⊤ where ϵi conditional on A,X follows a normal distribution N(0, σ2).

Suppose In − ρW is nonsingular (i.e., invertible), then

y = (In − ρW)−1Xβ + (In − ρW)−1ϵ. (A2)

Note that In − ρW is nonsingular if |ρ| < 1/∥W∥, where ∥ · ∥ is any matrix norm (e.g.,

the largest eigenvalue/Perron-Frobenius eigenvalue).

From the reduced form of Eq. (A1), we get

Wy = W(In − ρW)−1Xβ +W(In − ρW)−1ϵ. (A3)

Since

E[ϵ⊤Wy] = E[ϵ⊤W(In − ρW)−1Xβ] + E[ϵ⊤W(In − ρW)−1ϵ],

we have

E[ϵ⊤W(In − ρW)−1Xβ] = 0,

and

E[ϵ⊤W(In − ρW)−1ϵ] = σ2 tr[W(In − ρW)−1] ̸= 0.

Hence, the spatial lag Wy is endogenous.

3This Appendix is based on lecture materials from Prof. Michael D. König, Department of Spatial
Economics at VU Amsterdam.
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9.2.1 Why IV can be a solution

From Eq. (A2) we find that

E[Wy] = W(In − ρW)−1Xβ.

Applying Carl Neumann’s result on matrices we know |ρ| < 1/∥W∥, then

(In − ρW)−1 = In + ρW + ρ2W2 + . . . .

Therefore,

E[Wy] = WXβ + ρW2Xβ + ρ2W3Xβ + . . . ,

which can be rewritten as

E[Wy] = [WX,W2X,W3X, . . .]


β

ρβ

ρ2β
...

 .

Thus, the terms [WX,W2X,W3X, . . .] can be used as instrumental variables (IVs) for

Wy.

Let Z = [X,WX,W2X, . . . ,WpX] be the n× h IV matrix. Then

E[Z⊤ϵ] = 0.

9.2.2 Why MLE can be a solution

MLE solves the endogeneity issue in SAR models by explicitly incorporating the dependence

betweenY andWY in the likelihood function. It models the spatial dependence structurally

and makes correlation among observations accounted for in the estimation process.

Suppose ϵ|W,X ∼ N (0, σ2In). Then from Eq. (A2), we have:

y ∼ N (µy,Σy),

where
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µy = (In − ρW)−1Xβ,

Σy = σ2(In − ρW)−1(In − ρW⊤)−1.

The joint density of y is then:

f(y) = (2π)−
n
2 (detΣy)

− 1
2 exp

{
−1

2
(y − µy)

⊤Σ−1
y (y − µy)

}
.

The log-likelihood is given by:

L(ρ, β, σ2) = −n
2
ln(2π)− n

2
lnσ2 + ln |In − ρW| − 1

2σ2
ϵ(δ)⊤ϵ(δ), (A4)

where

ϵ(δ) = y − Zδ = y − ρWy −Xβ.

The first-order conditions (FOCs) are given by:

∂L
∂ρ

= −tr
[
W(In − ρW)−1

]
+

1

σ2
(Wy)⊤ϵ(δ) = 0, (A5)

∂L
∂β

=
1

σ2
X⊤ϵ(δ) = 0, (A6)

∂L
∂σ2

= − n

2σ2
+

1

2σ4
ϵ(δ)⊤ϵ(δ) = 0. (A7)

From Eq. (A6), we get:

β = (X⊤X)−1X⊤(In − ρW)y.

Substituting β into Eq. (A7) gives:

σ2 =
1

n
y⊤(In − ρW)⊤MX(In − ρW)y,

where MX = In −X(X⊤X)−1X⊤.

Substituting β and σ2 into Eq. (A4) gives:

L(ρ) = −n
2
(1 + ln(2π))− n

2
lnσ2(ρ) + ln |In − ρW|,

where

σ2(ρ) =
1

n
y⊤(In − ρW)⊤MX(In − ρW)y.
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Finally, the MLEs are given by:

ρ̂MLE = argmax
ρ

L(ρ), (A8)

β̂MLE = (X⊤X)−1X⊤(In − ρ̂MLEW)y, (A9)

σ̂2
MLE =

1

n
y⊤(In − ρ̂MLEW)⊤MX(In − ρ̂MLEW)y. (A10)
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