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Abstract

Selection biases pose a central challenge in estimating spillover effects in spatial
autoregressive (SAR) models, primarily because network formation often depends on
unobservable individual preferences. This paper proposes a novel Bayesian framework
to jointly model both the dynamics of network effects and the formation process.
Specifically, we introduce an explicit latent structure that connects outcomes and
network selection equations in the SAR model through the error terms. This structure
captures both endogenous formation and associated spillover effects simultaneously
while enabling computationally efficient estimation. Estimation is performed via
Markov Chain Monte Carlo (MCMC) methods. We validate the model through a
simulation study and apply it to real-world data on R&D strategic alliance networks.
We find that both the standard and the corrected model confirm the significant roles
of immigrant executives in fostering collaboration and the positive spillover effects
resulting from these alliances. However, the standard deviations are much higher
in the standard model, indicating that ignoring network endogeneity can lead to
imprecise estimates and identification challenges. This paper contributes to a general
framework for estimating endogenous spillover effects and promotes the broader

application of Bayesian methods in causal inference for network data.
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1 Introduction

“We Sapiens rule the world not because we are so wise but because we are the only
animals that can cooperate flexibly in large numbers.”

— Yuval Noah Harari, Nexus

Social and economic networks play a central role in shaping agents’ decisions and out-
comes. With the rapid expansion of information technologies, interactions among individuals
and firms have become increasingly observable, allowing researchers to model interdepen-
dence explicitly. Decisions are rarely made in isolation—agents respond to incentives and
behaviors of their peers, collaborators, and competitors. Recognizing this interdependence,
recent econometric research has focused on identifying and estimating network effects, or
spillover effects, that arise through these linkages. While disciplines such as physics and
computer science emphasize network structure and topology, economists are primarily con-
cerned with the human dimension—strategic decision-making and the causal impact of net-
work structure on individual performance and social welfare.

A central issue in the empirical study of social interactions is the identification of causal-
ity. The workhorse—standard linear-in-means model-seeks to ascertain whether individual
behavior is causally influenced by the average behavior of a reference group. However, as
first formalized by Manski (1993), this model is subject to the "reflection problem.” In its
general form, the reflection problem makes it impossible to distinguish between three com-
peting hypotheses: endogenous effects (the influence of peers’ average outcomes), contextual
effects (the influence of peers’ average characteristics), and correlated effects (the influence of
shared unobservables or sorting). This is due to the perfect collinearity that arises between
the average group outcome and the average group characteristics, rendering the structural
parameters inseparable.

Even under the restrictive assumption that contextual and correlated effects are ab-
sent—the "pure endogenous-effects model”—identification is still not guaranteed. Manski
(1993) demonstrates that identification fails under two opposing conditions. First, if indi-
vidual characteristics and group-level average characteristics are statistically independent,
there is insufficient variation to identify the endogenous effect. Conversely, identification
also fails if these characteristics are linearly or functionally dependent. This latter issue
arises, for example, if social groups are defined by an attribute like income, which is also
included as an individual characteristic. Likewise, if students in a classroom share highly
similar individual traits, or if their individual characteristics are perfectly correlated with
the factors that define their group membership, the endogenous effect cannot be identified.

The spatial autoregressive (SAR) model circumvents the reflection problem by leveraging



the detailed structure of the network. As underscored by Bramoullé et al. (2009), identifica-
tion is achieved if the network exhibits intransitivity—that is, if the friends of an individual’s
friends are not necessarily their own friends.1 This property, common in most real-world net-
works, breaks the perfect collinearity inherent in the linear-in-means model, thus resolving
the reflection problem. However, the SAR specification introduces a different endogeneity
concern: simultaneity. An individual’s outcome influences their peers’ outcomes, and simul-
taneously, their peers’ outcomes influence the individual’s outcome. In the regression, this
means the spatial lag term (WY') is, by construction, correlated with the error term (e),
rendering standard OLS estimates biased and inconsistent.

Fortunately, the same network structure that solves the reflection problem also provides
a source for valid instrumental variables (IVs). The exogenous characteristics of individuals’
friend (W X) and at a network distance of two or more (e.g., friends’ friends, captured by
terms like W?2X) serve as natural instruments for the endogenous spatial lag. The intuition
for this exclusion restriction is that the characteristics of one’s friends are assumed to affect an
individual’s outcome only indirectly, through their influence on the outcomes of one’s friends.
In addition to this IV strategy, Maximum Likelihood (ML) and the Generalized Method of
Moments (GMM) are also standard approaches used to obtain consistent estimates for SAR
models, assuming the network itself is exogenous.

However, a more fundamental challenge is the endogeneity of the network itself. The
estimation strategies discussed above, are valid only under the assumption that the network
matrix, W, is exogenous. It is is often plausible in the SAR model’s original context of spa-
tial econometrics, where networks represent fixed geographic structures like the adjacency
of cities or states. In most social and economic contexts, however, this exogeneity assump-
tion is highly questionable. Individuals are not randomly assigned to peer groups; they
actively form and dissolve ties through a process of self-selection. If there are unobserved
factors—such as innate ability, motivation, or personal tastes—that influence both an indi-
vidual’s propensity to form friendships and their outcome of interest, the network matrix W
will be correlated with the error term €,. This correlation renders the previously mentioned
solutions inconsistent and biased.

A primary strategy for addressing network endogeneity is to adopt a joint modeling ap-
proach that explicitly specifies the network formation process. One prominent method within
this framework is the two-stage instrumental variable (IV) approach. Recognizing the diffi-
culty of finding valid external instruments for an entire network matrix,Kénig et al. (2019),
for example, propose a two-stage strategy to identify the causal effect of R&D spillovers.

In the first stage, they estimate a model of link formation (a logistic regression) to gen-

erate a predicted R&D network. This prediction is based on predetermined dyadic charac-



teristics, such as whether two firms had a past collaboration, shared a common partner, are
located in the same city, or have similar technological profiles. These variables are assumed
to satisfy the exclusion restriction; that is, they influence the current probability of a link
forming but are assumed not to affect the current outcome of interest directly, other than
through their effect on the network structure. In the second stage, this predicted network
matrix is used to construct valid instruments for the main outcome equation, purging the
estimates of endogeneity bias.

However, this method is not without its challenges. The consistency of the second-stage
estimates is highly dependent on the validity of the first stage. A poorly specified or weakly
predictive first-stage model can lead to weak instruments, which can introduce finite-sample
bias into the final results.

Other prominent methods for addressing network endogeneity include likelihood-based
and control function approaches, both of which often lead to a Bayesian estimation strategy
due to the models’ complexity. For likelihood-based methods, the central challenge is that
the full joint likelihood of the network and outcome equations is often computationally in-
tractable for large networks. This intractability makes both standard Maximum Likelihood
(ML) and full-information Bayesian estimation infeasible. To overcome this, Hsich et al.
(2025) propose a composite likelihood estimation method. This approach remains compu-
tationally feasible by maximizing an objective function composed of a product of simpler,
conditional log-likelihoods (e.g., the likelihood of the outcomes given the network, and vice-
versa) rather than the full, complex one. Then they implement this by using a Bayesian
Markov chain Monte Carlo (MCMC) approach to estimate the parameters of the compos-
ite likelihood model. This hybrid strategy combines the computational scalability of the
composite likelihood framework with the Bayesian paradigm’s ability to handle unobserved
latent variables through data augmentation. While this tractability comes at the cost of
some statistical inefficiency compared to a full-information method, it makes an otherwise
unsolvable problem estimable.

The control function approach, in the spirit of the classic Heckman (1979) selection
model, addresses endogeneity by modeling its source directly. Pioneered in this context
by Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016), this method intro-
duces unobserved latent variables into both the network formation and outcome models.
Hsieh and Lee (2016) term their specific implementation the Selection-Corrected SAR (SC-
SAR) model. The introduction of these high-dimensional latent variables is what makes the
model’s likelihood intractable for classical estimation methods like ML, which would require
a computationally prohibitive integration step. This is precisely why they turn to Bayesian

estimation. The Bayesian MCMC framework makes the model tractable by treating the



latent variables as parameters to be estimated via data augmentation, thus avoiding the im-
possible integration problem. This framework has since been extended to dynamic settings,
combining the selection-correction process with the Spatial Dynamic Panel Data (SDPD)
model (Han et al., 2021).

While these latent variable models are intuitive, their implementation can be compu-
tationally demanding and relies on specific distributional assumptions about the unobserv-
ables. This paper, therefore, proposes a more direct and computationally efficient method
to address this endogeneity. Following the joint modeling literature, our approach explicitly
models the correlation between the network formation and outcome equations. However,
instead of relying on high-dimensional latent variables, we model this dependency by incor-
porating the error term from the outcome equation directly into the specification for network
formation.

Given the complex stochastic structure this introduces, we develop a Bayesian MCMC
algorithm for estimation. We first validate the model’s performance through Monte Carlo
simulations. We then apply the model to a network of inter-firm research and development
(R&D) collaborations and compare our estimates to those from a standard SAR model.
Our results reveal a significant correlation on the dynamic of two models, highlighting the
importance of our proposed correction in analyzing network data.

The remainder of the paper is organized as follows. Section 2 presents the model speci-
fication for network formation and the SAR panel data model. The Bayesian identification
strategy is propsed in section 3. Section 4 presnets the simulation studies to test the model
performance. Section 5 includes an empirical study on R&D collaboration networks, then

section 6 concludes the paper.

2 Model

2.1 SAR Model

Consider an environment where individuals form network links and their activity outcomes
are subject to social interactions (peer effects). Let n be the number of individuals.

Let Y; = (Y1t Y2ty - - - Yne) be the n x 1 outcome vector of individuals at time ¢. Let
X; = (14, oy, . .., xy)" denote the n x k matrix of exogenous characteristics at time ¢. W,
represents the n x n adjacency matrix at time ¢, which evolves over time and may not be
symmetric due to a lack of reciprocity. In a given period ¢, each entry w;j; represents the rela-
tionship from individual 7 to individual j, and is equal to 1 if ¢ claims its relationship with j,

and 0 otherwise. And to avoid a self-loop, the diagonal entries are all zeros. Mathematically,



w;j+ = 0 when i = j.

In the matrix form, the model can be written as:
}/;f:/\Wt}/;t“—Xtﬁl‘I‘WtXtBQ“‘a‘l‘éTt“‘Et, tzl,,T (1)

where A\ represents the contemporaneous peer effect, 5; and Py are the coefficients for the
direct and contextual effects of the covariates; & = (ay, a, . .., )" is the nx 1 vector of time-
invariant individual effects, where each «; is the dummy variable equals to 1 for individual
i, and it is time invariant. Define also 7 = (71, 7s,...,7)" as the T' x 1 vector of time fixed
effects, where each 7; is the dummy variable equals to 1 at time ¢; £ is an n x 1 vector of ones;
and g, = (€14, €94, - - ., Ent)’ 18 the vector of stochastic error terms, where €5 N (0,02).

For observation i (i = 1,...,n) we can write

Yit = A Z Wiyt + TitB1 + Z Wi Tjtfo + o + T+ e, t=1,...,T (2)
=1 =1

Following LeSage and Pace (2009), we can rewrite Equation (1) as

Y, = MWY, = X8+ WiXiBa+a+ b7+ &
(I, = A\W)Y: = Xif + Wi Xyfo+a+ 0,1 + &
Y, = (I, = W) NX. B+ WX, Ba + a+ b1y + )
= (L, = MW N (X8 + WiXiBo + a4 o) + (L, — AW ey (3)
g ~ N(0,021,), t=1,....T

2.2 Latent Utility

However, due to self-selection, each entry of W; might be endogenous to Y;. We take a
standard approach of modeling endogeneity through unobserved heterogeneity.
Assume that the binary choice w;;; is made based on the difference in latent utilities

derived from the choices of individual 7 regarding potential friend j defined as
Uijt (wijt =1) - Uijt (wijt =0) = Augje = Yijr + Gijt (4)

where
Yijr = cuY1 + Cjty2 + CijeYs.

Random variables ;; and (;;; are assumed to be jointly distributed as bivariate normal such

that the correlation between them is generated by unobserved factors simultaneously affect-



ing the network choice and economic outcome variables. However, instead of introducing

specific latent variables controlling for such unobservables, we write a regression-like equation
Gijt = 0€it + Mijt,

where from equation (2)

Eit = Yit — A Z WijtYjt — (Iz’tﬁl + Z Wit B2 + v + Tt) )

Jj=1 Jj=1
and 7;;; ~ N (0,1) and the equation can be interpreted as defined by the conditional disti-
bution (i | €4 ~ N (0€it, 1) based on the joint distribution of €;; and ¢;;;. Since the variance
of the conditional distibution of Au;;; given e; is fixed identification should not be an issue.

Then the observability condition is

wye =1 if i+ Gy >0
wiie = 0 if Yy + Gy <O

In essence, endogeneity of the spatial choice matrix W; is modeled through a joint distri-

bution of the errors in the outcomes equation (1) and network choice equation (4) where

0 2 o,
<€it)<—ijt) ~ Nn ( ; ( 7 0-27] >>
0 Oy O,

such that G | e ~ N (040 %€, 02 — 02,0-%), where we further denote 6§ = o.,072 and set

n ZenZe
2 _ 2 -2
o,=1+00"

Similar to (Koop et al., 2007), we can express latent variable Au;;; as a probit model:

i.1.d.
Auije = cum1 + CieYa + Cijtys + 0i + Mije,  Mije ~ N (0,1) (5)

In this formulation the time and individual fixed effects would cancel out when computing
the difference Aw;;;. Then

1 if Awge >0,

0 if Au; <0.

Wijt =

2.3 Likelihood

Denoting variables Zt = (Xt7 WtXt) y Zit = <.T2‘t, Z?:l withjt) 7Cijt = (Cit7 Cit, Cijt); Qijt =
(Cijt7€it)7 and parameters I'= (71772773)17 6/ = (F,ad)v ﬁ = (Bl?ﬁZ)la @ = {)‘aﬂaavTa 0579}'



Based on Equation (3) and (5), the full conditional kernel can be written as

P(Y,Au | W, ©) (6)
~ {(2m§)-% 17— awy|"

T n n
1
X exp <—T‘2 Z Z[yit - A Zwijtyjt —Q; — T — Zz't/g]2>
€ =1 =1

Jj=1
T n

n n 2
X exp —% Z Z Z (Auz‘jt - Cijtr - 5[?/@: - A Z WijtYje — O — Ty — Zz‘tﬁ])

t=1 i=1 j#i j=1

3 Bayesian Estimation

In this section, we provide details of the MCMC algorithm for the SAR model with the latent
utility model to capture the endogenous network formation. The posterior is augmented with

latent variables Aw;;;. The steps of the MCMC algorithm are the following:

1. As denoted above Q;j; = (cit, ¢jt, Cijis i), 0 = (I, 9). Following Koop et al. (2007),
conditionally on &, as well as individual- and dyad-level regressors, the latent Aw,j

can be drawn from the truncated normal distribution:

1 ’ ’ 17t 3

where the notation TN[a,b]<,U,,02) denotes the normal distribution with mean p and

variance o2, truncated to the interval [a, b].

2. Given the prior distribution of v ~ N(I, H;') and § ~ N (é, H 5_1) form the prior for
0 ~N(9, H,") such that



Then the full conditional distribution of 6 is 8 ~ N (8, H, ') where

Hy = HO+ZZZQz]tQijt7

t=1 =1 j=1
J#i

T n n

0 = Hy | Hob+ > > QL Au

t=1 i=1 j=1
J#i

3. We previously defined Z; = (xit,zyzl wijtxjt> and B = (B4, 62). Given the prior
distribution of 8 ~ N(8, H [_31), the full conditional distribution of 3 is:

— ——1
/BNN(/BaHﬁ )7
where
I7 1 2 Iz
Hﬁ - ﬂﬁ‘i‘ 2+(5 Tl—l Zzt its
9e t=1 i=1
1 T n
/8 = H,B ﬁﬁé‘i‘( —|—52n—1>z Z{t<yzt—)\2wzjty]t—al—rt>
t=1 i=1
T n n
=00 D> Zi(Auiz = Cigl)
t=1 =1 ];él
e

4. To ensure identification of the individual fixed and time fixed effects, we impose the
normalization «; = 0, treating individual 1 as the baseline (Han et al. 2021; Greene
2018). This restriction resolves perfect multicollinearity arising from the inclusion of
full sets of both fixed effects in the absence of an intercept Specifically, the design matrix
suffers from linear dependence because the sum of individual dummies (3 ; «;) and
time dummies (Zthl 7¢) both equal a constant vector 1, implying > | Oéi—Zthl 7. = 0.

This violates the full-rank assumption, rendering parameters unidentifiable.

By setting a; = 0, we eliminate this dependence: the remaining individual dummies
does not add up to 1. Additionally, no corresponding omission of time dummies is
required. Because the model lacks an intercept, the time dummies retain the necessary
role of capturing the overall level of the dependent variable across periods. All T' time

effects (7, ..., 7r) remain freely estimated, measuring absolute temporal shifts relative



to the baseline individual.

Under the prior a; ~ N (gi , H ;})7 the full conditional distribution of «; is
——1

Qy ~ N(al',Hai ),

1
H, = ﬂai+T(_2+52(n_1))7

€

. 1 -
@ = H, (H,a+ <§ +6%(n — 1)) > (y“ — A wieyie — ZafB - Tt)
€ t=1 7j=1
T n
—0 Z Z(Auz’jt - Cijtr))
t=1 j=1
J#i

5. Given the prior distribution of 7, ~ N(z,, H,."), the full conditional distribution of for
each 7; is:

7~ N7 HL,

where

Sl
I

1
Tt ﬂrt+n<_+52(n_1)) )

2
o

L 1 n n
T, = H_ |H, 1,+ (; + 8%(n — 1)) (yit - )\Zwijtyjt — ZufB — Oéi)
€ i=1 Jj=1
—5 Z Z (Auijt — C’Z-jtF)
i=1 j=1

J#
6. The full conditional of o2, given the prior

‘75_2 ~ Gamma <%, g) ,

18



T n
T 1
o-? ~ Gamma <V+2n ’g—I—QZZ’SZZt) :

t=1 i=1

7. Given the prior A ~ Uniform(—1, 1), we sample A from the full conditional distribution:

POV Y, Au, W, 0) oc n()) - P(Y, Au | W, ),

where the likelihood is given by Equation (6):

To sample from the full conditional of A\, we designed a Metropolis-Hastings (MH) step
with a proposal density following LeSage (1997); LeSage and Pace (2009); Hsieh and
Lee (2016); Han et al. (2021).

S1.1: Propose A ~ N(A= ¢y), where ¢, is adjusted during iterations to achieve
an acceptance rate between 40% and 60%. Check whether A satisfies the stability

condition implied by the prior. If not, redraw A until it satisfies the condition.

S1.2: With acceptance probability

~ n p(.%t | Wt75\7ﬁ7ai77—t70-;2>
Pr ()\(q_l), )\) =min< 1, X
H];!p(ylt | Wta)\(q_l)aﬁa aiaTtagg_z) ﬂ-()\(q_l))

t=1 1

update A@ = \; otherwise, set \(@ = \(@=1),

4 Simulation Study

This simulation study jointly estimates the latent utility and SAR models. The data-
generating process (DGP) follows the SAR specification in equation (1) and the latent
utility model in equation (4). The simulated panel consists of 100 firms across 5 sectors
observed over 20 years, controlling for both time and sector fixed effects. This setup

is designed to approximate the structure of the empirical application discussed later.

Table 1 reports the posterior means, standard deviations, and credible intervals from
the Bayesian estimation alongside the true parameter values used in the DGP. Overall,
the model reproduces the true parameters with reasonable accuracy. The posterior
means are close to the true values, and the 95% credible intervals typically include the

true parameters. The mean-to-standard-deviation ratios suggest that most coefficients

10



Table 1: Monte Carlo experiment results

Parameter True Mean SD Ratio ACF20 CI95

A 0.300 0.279 0.018 15.507 0.089 0.247, 0.316
Bo 0.500 0.532 0.039 13.467 0.008 0.453, 0.609
51 1.000 0.991 0.007 147.120 0.053 0.978, 1.005
B2 1.000 1.012 0.007 154.350 0.101 1.000, 1.026
B3 1.000 1.000 0.007 150.490 —0.009 0.987, 1.014
B4 1.000 1.006 0.007 153.140 0.024 0.993, 1.019
o? 1.000 1.053 0.033 31.477 0.029 0.992, 1.124
0 —0.500 —0.505 0.004 —139.530 —0.012 —0.512, —0.498
Yo 0.700 0.698 0.004 176.360 0.031 0.690, 0.706
" 0.100 0.100 0.003 29.536 —-0.033 0.093, 0.106
Yo 0.500 0.502 0.004 135.480 —0.033 0.495, 0.510
3 0.600 0.599 0.004 143.200 —0.031 0.591, 0.607
V4 0.200 0.192 0.003 56.188 —0.019 0.186, 0.200
s 0.300 0.296 0.004 81.945 0.000 0.289, 0.303
Y6 0.200 0.203 0.004 57.138 0.020 0.196, 0.210

Notes: MCMC diagnostics for the simulated SAR-MCMC model based on 10,000 total
draws with a 2,000 burn-in period. Posterior samples are thinned by retaining every
10th iteration.

are estimated with relatively high precision. As shown in figure 1, the trace plots
indicate stable chains, and after thinning, the autocorrelation functions decay rapidly,

suggesting satisfactory convergence.

The estimated spillover parameter is A = 0.279 with a 95% credible interval of [0.247, 0.316],
which is close to the true value of 0.3. Similarly, the estimated endogeneity parameter

6 = —0.505 (95% CI [—0.512, —0.498]) aligns closely with the true value of —0.5. These
results indicate that the model adequately captures the dependence between the latent
utility and the SAR disturbances.

Lag-20 autocorrelations are below 0.1 for all parameters, implying satisfactory chain
independence under a thinning interval of 10. Slightly higher persistence is observed
for A and S5, but both remain within acceptable limits. Overall, the simulation pro-
vides evidence that the proposed model yields reliable estimates for both spatial and

structural parameters in moderately sized panel data.
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5 Empirical Application

5.1 Data Summary

The R&D alliance data from 2003 to 2022 are obtained from the SDC Joint Ventures
€9 Strategic Alliances Database (Konig et al. 2019; Schilling 2009). This database
is chosen for its comprehensive coverage of inter-firm R&D collaborations, drawing
from a wide range of sources, including SEC filings, international equivalents, trade
publications, and news reports. To focus on innovation-oriented partnerships, only

alliances explicitly classified as R&D collaborations are included in the sample.

Over the past two decades, several firms in the dataset underwent mergers and ac-
quisitions (M&A). Following the approach of Konig et al. (2019), it is assumed that
acquiring firms inherit all existing R&D collaborations of the target firms. Information
on M&A events is obtained from Thomson Reuters’ SDC M&A and S&P Compustat
databases, while firm-level financial data are collected from S&P Compustat and Fi-

nancial Modeling Prep.

The analysis focuses exclusively on publicly listed pharmaceutical firms with Standard
Industrial Classification (SIC) code 283, which represents the industry with the highest
number of R&D collaborations (Hsieh et al. 2025).! Following Hsieh et al. (2025) and
Konig et al. (2019), all financial variables are deflated by the Consumer Price Index
(CPI) of the firm’s home country, expressed in millions of U.S. dollars, and transformed
into natural logarithms. Qutput is measured as the logarithm of annual revenue, R&D
effort as the logarithm of R&D expenditures, and Productivity as the one-year lag of
R&D capital stock, computed using a 15% annual depreciation rate. Table 2 presents

the full list of variables and descriptive statistics.

Information about senior executive officers is compiled from multiple sources. The
primary source is firms’ annual reports filed with the Securities and Exchange Com-
mission (SEC), which contain their names and brief biographies. This information is
further cross-referenced and supplemented using official company websites, Wikipedia,
LinkedIn, WikiTree, Bloomberg, Encyclopedia.com, NNDB, WBE, and various media

reports.

Because birthplace information is occasionally unavailable, an inferential approach is

adopted: the country of the university where an executive obtained their bachelor’s

L According to Bloom et al. (2013), R&D activities are predominantly concentrated among publicly traded
firms, suggesting that this sample captures the majority of innovation efforts.
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Table 2: Summary statistics for firm-level variables (SAR sample)

Variable Mean SD Median Min Max

Output 4.181 3.668 4.085 -7.724  11.231
LongTermDebt  2.678  3.636 1.559 -7.612 10.690
CostOfRevenue  3.072  3.526 2.458 -8.510 10.233

R&D 3.316  2.685 3.199 -8.023 16.913
Productivity 4.440  2.999 4.548 -5.521  16.913
Observations 3,121

Notes: All financial variables are deflated by the Consumer
Price Index (CPI) of firm’s home country, expressed in mil-
lions of U.S. dollars, and transformed into natural logarithms.
Output is measured as the logarithm of firms’ annual revenue,
RED effort as the logarithm of R&D expenditures, and Pro-
ductivity as the one-year lag of R&D capital stock, computed
using a 15% annual depreciation rate.

degree is used as a proxy for birthplace (Mahroum and Ansari 2017). Executives who
obtained their undergraduate degrees outside the country where their firm is head-
quartered are classified as immigrants. Since some individuals may have immigrated
at a young age and completed their education in the United States, this approach may
undercount immigrant executives; therefore, the resulting estimates represent a lower

bound of immigrants’ contribution to U.S. executive leadership.

To isolate the influence of immigrant executives in the U.S. context, all executives of
non-U.S. firms are assumed to have been born in the same country where their firm
is located. This assumption is supported by several observations. First, immigrant
executives are considerably more prevalent in the United States than elsewhere, par-
ticularly in technology and healthcare sectors (Mahroum and Ansari 2017). In contrast,
firms in many Asian and African countries tend to hire domestic executives due to cul-
tural, linguistic, or policy-related barriers (Arp et al. 2013; Platonova and Urso 2013;
Flahaux and De Haas 2016). In Europe, while cross-country mobility exists, cultural
proximity often limits executive diversity. Moreover, research indicates that compared
to the United States, European countries have historically maintained less attractive
immigration policies for highly skilled workers, leading to a persistent “brain drain”
toward the U.S. (Mahroum 1999; Mahroum 2000; Mahroum 2001; Prato 2024).

The dyadic variables, reported in Table 3, capture both relational and demographic
characteristics between firm pairs. The variable ImmigrantFxecutive equals one if at
least one senior executive in either firm is an immigrant. SameCountryOfBirth equals
one if at least one pair of executives from the two firms was born in the same country.

Similarly, OldFriends equals one if the two firms had an R&D alliance prior to the

13



Table 3: Summary statistics for dyadic/network variables

Variable Mean SD Median Min Max

ImmigrantExecutive 0.470 0.499 0.000 0.000 1.000
SameCountryOfBirth ~ 0.290  0.454 0.000 0.000 1.000

OldFriends 0.014 0.136 0.000 0.000 4.000

CommonFriends 0.087 0.281 0.000 0.000 1.000

SameCity 0.007  0.084 0.000 0.000 1.000

AveOutput 4.172  2.602 4.132 -6.928 11.194
AveDebt 2.663  2.604 2.529 -6.000 10.614
AveCost 3.062 2.504 3.043 -7.479  10.176
AveR&D 3.307 1915 3.215 -6.754  13.109
AveProductivity 4.418  2.237 4.486 -4.345  13.797
DifOutput 4.182  3.029 3.633 0.000  18.679
DifDebt 3.937 3.182 3.443 0.000 18.244
DifCost 3.929  3.030 3.525 0.000  18.565
DifR&D 2.972 2.300 2.535 0.000  24.785
DifProductivity 3.128 2493 2.620 0.000  20.604
NetworkDensity 0.005 0.071 0.000 0.000 1.000

Observations 254,910

Notes: Binary indicators (ImmigrantEzecutive, SameCountryOf-
Birth, OldFriends, CommonkFriends, and SameCity) take the value
one when the corresponding relational or spatial condition holds be-
tween two firms and zero otherwise. Variables prefixed by Ave repre-
sent the average of firm-level financial and innovation characteristics
within each dyad, while those prefixed by Dif denote the absolute
differences between the two firms, capturing heterogeneity in size,
resources, and technological capability. All continuous variables are
expressed in natural logarithms and deflated via the Consumer Price
Index (CPI) of the firm’s home country, and converted to U.S. dollars.
NetworkDensity measures the share of realized links among all possi-
ble firm pairs in the observed R&D collaboration network. Summary
statistics are computed for the unbalanced panel of 254,910 firm—pair
observations covering 2004-2022.

current period, and CommonFriends equals one if they shared at least one collaborator
before forming the current alliance. SameCity equals one if the two firms are located
in the same city. Together, these binary indicators characterize the social and spatial

proximity that may influence the formation of interfirm R&D collaborations.

In addition to these binary measures, the dataset includes continuous variables that
describe firm-level characteristics averaged or differenced across each dyad. Variables
beginning with Ave (e.g., AveOutput, AveDebt, AveCost, AveRéD, and AveProductiv-
ity) denote the average levels of the corresponding firm attributes between the two firms
in each pair, capturing the overall scale or intensity of their financial and innovation
activities. Variables beginning with Dif (e.g., DifOutput, DifDebt, DifCost, DifRED,

and DifProductivity) measure the absolute differences in these attributes between the
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two firms, reflecting heterogeneity in size, resource endowment, and technological ca-
pability. Finally, NetworkDensity represents the proportion of realized connections
among all potential firm pairs within the observed network, serving as a measure of
the overall connectivity of the R&D collaboration network. All continuous variables
are transformed using logarithmic transformations to reduce skewness and facilitate

comparison across variables.

5.2 Estimation Results

The Bayesian estimation is implemented using Markov chain Monte Carlo (MCMC)
sampling with 100,000 iterations, discarding the initial 15,000 iterations as burn-in and
retaining every tenth draw to reduce serial correlation. Posterior means and standard
deviations computed from the retained draws are reported as point estimates. Conver-
gence is verified following standard diagnostics (Geweke, 1992; Raftery and Lewis, 1992;
Heidelberger and Welch, 1983). Table 4 and 6 reports the results without contextual

effects, while Table 5 and 7 incorporates spatially lagged (contextual) covariates.

Table 4: SAR (no contextual effects): OLS vs. Bayesian

OLS Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

A 0.046 0.012 0.050 0.007 7.692 0.013 0.037, 0.064
Constant 0.967 0.323 -0.228 0.988 -0.231 0.496 -2.144, 1.774
LongTermDebt 0.082 0.012 0.113 0.007 15.957 0.004 0.099, 0.127
CostOfRevenue 0.794 0.011 0.514 0.007 75.919 -0.010 0.501, 0.527
R&D 0.246 0.019 0.144 0.010 14.284 0.010 0.125, 0.164
Productivity -0.038 0.016 0.016 0.013 1.275 0.025 -0.009, 0.041

o? 1.888 — 0.607 0.027 22.677 0.123 0.563, 0.668
Observations 3,121

Notes: Dependent variable: Output. Fixed effects: sector and year. Standard errors for MLE are
IID. 02 is the square of the empirical residual. RMSE (OLS): 1.368; Adjusted R?: 0.860; Within
R2?: 0.858. Bayesian columns report posterior means (Mean), posterior standard deviations (SD),
mean-to-SD ratios (Ratio), lag-20 autocorrelation (ACF20), and 95% credible intervals (CI95),
shown as lower and upper bounds separated by a comma.

The coefficient of primary interest is the endogenous spillover parameter A, representing
the strength of peer or network interactions in output among firms. Under the nor-
malized network specification, A measures the average percentage change in a firm’s
output in response to a one-percent change in the average output of its connected

peers (LeSage and Pace, 2009). In both the baseline and contextual specifications, the
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Table 5: SAR with Contextual Effects: OLS vs. Bayesian

OLS Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

A 0.055 0.122  0.054 0.011  5.077 -0.000 0.033, 0.075
Constant 0.973 0.324 -0.055 1.066 -0.052 0.535 -2.064, 2.174
LongTermDebt 0.082 0.012 0.113 0.007 15.686 -0.018 0.099, 0.127
CostOfRevenue 0.794 0.011 0.514 0.007 74.996 0.023 0.501, 0.528
R&D 0.246 0.019 0.145 0.010 14.045 -0.017 0.125, 0.165
Productivity -0.038 0.016 0.016 0.013  1.262 0.047 -0.009, 0.041
LongTermDebt (Contextual) -0.009 0.072 -0.078 0.020 -3.942 -0.023 -0.117, -0.039
CostOfRevenue (Contextual) -0.038 0.124  0.048 0.032  1.474 0.019 -0.018, 0.110
R&D (Contextual) 0.138 0.112 -0.021 0.038 -0.556 0.030 -0.093, 0.055
Productivity (Contextual) -0.086 0.084  0.030 0.044 0.684 0.032 -0.057, 0.116
o? 1.890 0.612 0.028 21.645 0.130 0.567, 0.679

Observations

3,121

Notes: Dependent variable: Output. Fixed effects: sector and year. Standard errors for MLE are IID. OLS
SDs are from the regression output. Bayesian columns report posterior means (Mean), posterior standard
deviations (SD), mean-to-SD ratios (Ratio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95%
credible intervals (CI95), shown as lower and upper bounds separated by commas. Contextual variables (e.g.,
LongTermDebt (Contextual)) correspond to the average of cooperators’ covariates.

posterior mean of \ is approximately 0.05 with no zero included in the 95% credible in-
tervals (0.037, 0.064) and (0.033, 0.075), indicating statistically significant endogenous
spillovers. Substantively, these estimates suggest that a 1% increase in the average
output of a firm’s collaborators is associated with roughly a 0.05% increase in the

firm’s own output, holding other factors constant.

The implied social multiplier, defined as (1 — A)~! under a normalized network, is
approximately 1.053. This indicates that, on average, a one-unit exogenous increase
in output at the firm level ultimately generates a 5.3% larger equilibrium response
in the aggregate network through feedback effects among connected firms. Such am-
plification highlights the economic significance of interfirm interdependencies in R&D
collaboration networks: local improvements in productivity propagate beyond the di-

rectly affected firms, reinforcing aggregate output through repeated spillovers.

The Bayesian results are overally consistent with the OLS estimates, though the
Bayesian posteriors yield slightly larger and more precise estimates for the spillover
effect. This finding reflects the Bayesian model’s ability to account for uncertainty
in the joint distribution of the parameters and to mitigate small-sample bias through
hierarchical shrinkage. When contextual effects are included, the OLS estimate of A
becomes statistically insignificant, likely because the contextual covariates absorb some

of the between-firm variation. However, the Bayesian estimate of A remains credibly
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different from zero, underscoring the robustness of the spillover mechanism even after

controlling for network-level covariates.

For the own-firm characteristics, the coefficients on LongTermDebt, CostOfRevenue,
and Ré&D remain positive and significant across specifications, indicating that capital
structure and R&D intensity are key drivers of output growth. In contrast, the coeffi-
cient on Productivity is small and statistically weak, suggesting diminishing marginal
effects once interfirm dependencies are accounted for. In terms of contextual coef-
ficients, only LongTermDebt (Contextual) is statistically significant, with a posterior
mean of —0.078 and a 95% credible interval of [—0.117, —0.039]. This negative sign
suggests that higher long-term debt levels among a firm’s R&D partners are associated
with a reduction in the focal firm’s output, holding other factors constant. One inter-
pretation is that when partner firms face higher leverage or financial constraints, their
capacity to sustain cooperative innovation and share resources diminishes, which in
turn negatively affects the joint productivity of the network. This finding underscores
the importance of partners’ financial stability in determining the overall effectiveness
of R&D collaborations.

Following LeSage and Pace (2009) and Hsieh and Lee (2016), the estimated coefficients
can be further decomposed into direct, indirect, and total effects. The direct effects
reflect the marginal impact of a firm’s own covariate on its output, whereas the in-
direct effects (or network spillovers) measure how that covariate propagates through

connected peers via (I — A\W)~L.

The total effect is the sum of both, capturing the
overall equilibrium response of the network to an exogenous change in a given covari-
ate. For instance, the posterior mean of the own-firm long-term debt coefficient implies
that a 1% increase in a firm’s own long-term debt raises its output directly by about
0.11%, while the indirect (network-mediated) effect through connected collaborators
reduces output by approximately 0.01%, yielding a total marginal effect of roughly
0.10%. These magnitudes indicate that although own-firm characteristics remain the
primary determinants of performance, interfirm financial linkages exert a measurable,
and sometimes offsetting, influence on overall productivity through the collaboration
network. Taken together, the positive direct effect and the negative contextual spillover
effect of long-term debt reveal a nuanced dynamic in which financially leveraged firms

may benefit individually but transmit adverse externalities to their partners.

For instance, the posterior mean of the long-term debt coefficient implies that a 1%
increase in a firm’s own long-term debt raises its output directly by about 0.11%, while

the indirect (network-mediated) effect through connected collaborators minus approx-
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imately 0.01%, yielding a total marginal effect of roughly 0.1%. These magnitudes un-
derscore that although own-firm characteristics dominate in explaining performance,
interfirm linkages play a meaningful—albeit secondary—role in adjusting the effects

through the collaboration network.

Table 6: Standard and Bayesian Probit Estimates (without contextual effects)

MLE Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI195

0 (Endogeneity) — - -0.168 0.023 -7.224 0.065 —0.212, —0.120
Constant -5.047 0.123 -5.351 0.117 -45.791 0.680 —5.573, —5.119
ImmigrantExecutive 0.212 0.034 0.213 0.033 6.391 0.003 0.147, 0.280
SameCountryOfBirth -0.002 0.037 -0.013 0.037 -0.362 -0.001 —0.086, 0.057
OldFriends 1.693 0.032 1.703 0.029  59.367 -0.010 1.648, 1.760
CommonFriends -0.123 0.040 -0.109 0.038 -2.850 0.024 —0.182, —0.034
SameCity -0.158 0.180 -0.185 0.168  -1.103 -0.004 —0.522, 0.135
AveOutput 0.489 0.035  0.629 0.038 16.572 0.491 0.549, 0.701
AveDebt -0.0561 0.011 -0.071 0.012  -6.049 0.053 —0.093, —0.047
AveCost -0.194 0.025 -0.262 0.026 -10.097 0.297 —0.312, —0.209
AveR&D 0.096 0.017  0.066 0.016 4.057 0.091 0.035, 0.099
AveProductivity -0.118 0.012 -0.123 0.013  -9.464 0.102 —0.147, —0.097
DifOutput 0.145 0.018 0.182 0.017 10.749 0.391 0.147, 0.214
DifDebt -0.004 0.006 -0.009 0.006 -1.444 0.004 —0.021, 0.004
DifCost -0.039 0.013 -0.052 0.012  -4.227 0.206 —0.076, —0.028
DifR&D 0.024 0.011 0.013 0.011 1.252 0.068 —0.008, 0.034
DifProductivity -0.045 0.009 -0.044 0.009 -4.718 0.089 —0.063, —0.026

Observations

254,910

Notes: MLE (OLS) columns report probit maximum-likelihood estimates and robust standard errors.
Bayesian columns report posterior means, posterior standard deviations (SD), mean-to-SD ratios (Ra-
tio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95% equal-tailed credible intervals (CI95),
presented as lower and upper bounds separated by commas. This specification excludes contextual ef-

fects in the SAR model.

In the estimation of the latent-utility (probit) model, the results from the Bayesian
and standard MLE approaches are largely consistent in both magnitude and statistical
significance. The parameter of primary interest is the endogeneity term o, which
is negative and statistically significant even under the 95% credible interval in both
specifications. This finding provides evidence of non-negligible endogeneity between
the latent alliance-formation process and firms’ output decisions captured in the SAR
model. The negative sign of § indicates that unobserved factors lowering the probability
of alliance formation tend to be associated with higher unobserved productivity shocks
in the SAR equation, implying a negative correlation between the residuals of the two

latent processes.

The large and negative constant term (posterior mean ~ —5.35) is consistent with

18



Table 7: Standard and Bayesian Probit Estimates (with contextual effects)

MLE Bayesian
Variable Estimate SD Mean SD Ratio ACF20 CI195
0 (Endogeneity) - - -0.166 0.024 -6.918 0.169 —0.212, —0.118
Constant -5.047 0.123  -5.340 0.144 -37.210 0.795 —5.615, —5.071
ImmigrantExecutive 0.212 0.034 0.212 0.034 6.279 0.021 0.146, 0.279
SameCountryOfBirth -0.002 0.037 -0.014 0.037 -0.377 0.045 —0.086, 0.059
OldFriends 1.693 0.032 1.704 0.029 58.768 -0.018 1.648, 1.761
CommonFriends -0.123 0.040 -0.112 0.039 -2.832 0.002 —0.189, —0.036
SameCity -0.158 0.180 -0.188 0.171  -1.101 0.020 —0.534, 0.130
AveOutput 0.489 0.035  0.625 0.044 14.131 0.634 0.538, 0.714
AveDebt -0.051 0.011 -0.070 0.012 -5.816 0.087 —0.093, —0.046
AveCost -0.194 0.025 -0.261 0.028  -9.472 0.342 —0.315, —0.207
AveR&D 0.096 0.017  0.065 0.018 3.712 0.159 0.031, 0.100
AveProductivity -0.118 0.012 -0.121 0.013  -9.585 0.049 —0.146, —0.096
DifOutput 0.145 0.018 0.181 0.019 9.388 0.503 0.142, 0.219
DifDebt -0.004 0.006 -0.009 0.006 -1.466 0.068 —0.022, 0.003
DifCost -0.039 0.013 -0.052 0.013 -4.016 0.260 —0.077, —0.027
DifR&D 0.024 0.011 0.015 0.011 1.369 0.064 —0.007, 0.035
DifProductivity -0.045 0.009 -0.045 0.009 -4.746 0.072 —0.063, —0.026
Observations 254,910

Notes: MLE (OLS) columns report probit maximum-likelihood estimates and robust standard errors.
Bayesian columns report posterior means, posterior standard deviations (SD), mean-to-SD ratios (Ra-
tio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95% equal-tailed credible intervals (CI195),
presented as lower and upper bounds separated by commas. The SAR model includes contextual effects.

the sparsity of the observed network, reflecting the empirical difficulty of establishing
successful R&D strategic alliances among firms. Among firm-pair characteristics, the
positive and statistically significant coefficient on ImmigrantEzxecutive highlights the
role of immigrant executives in facilitating cross-firm cooperation, potentially through
broader international networks and cultural openness. By contrast, the coefficient on
SameCountryOfBirth is negative but statistically insignificant, suggesting that shared
nationality alone does not drive alliance formation—a result that may reflect an open
and cosmopolitan orientation among collaborating firms. The positive and highly
significant coefficient on OldFriends underscores the importance of relational trust and
accumulated experience in sustaining interfirm collaboration. In contrast, the negative
coefficient on CommonFriends suggests that pharmaceutical firms may not rely heavily
on indirect acquaintances or third-party recommendations when seeking new R&D
partners, possibly reflecting the sector’s emphasis on confidentiality and specialized
expertise. Meanwhile, the negative but insignificant coefficient on SameCity indicates
that geographic proximity plays a limited role once social and strategic linkages are

controlled for.
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The coefficients on the average variables (AveDebt, AveCost, Ave Output, and AveRED)
highlight the importance of joint financial soundness and research capacity in facili-
tating alliance formation—firms prefer partners that are both financially stable and
technologically capable. Finally, the results for the difference variables (DifOutput,
DifRéID, ete.) provide evidence consistent with homophily in partnership formation:
firms tend to collaborate with others that are similar in performance and innovation
intensity. The positive and significant effects of DifOutput and DifRéD indicate a
pattern of strategic complementarity—suggesting that firms also seek partners whose
strengths can compensate for their own weaknesses, reflecting a balance between sim-

ilarity and complementarity in R&D cooperation.

6 Conclusion

This paper develops and estimates a structural model that extends the Spatial Autore-
gressive (SAR) framework to account for endogenous network formation. When the
spatial weight matrix is endogenously determined—meaning it is correlated with the
disturbances of the SAR model—standard estimators become inconsistent, leading to

endogeneity and selection bias in the outcome equation.

While the literature has proposed powerful solutions, such as control function ap-
proaches using high-dimensional latent variables or composite likelihood methods |,
these can be computationally demanding and rely on specific assumptions about the
unobserved drivers of network formation. This paper, therefore, proposes a more direct
and computationally tractable joint modeling approach. Instead of introducing latent
variables, we explicitly model the endogeneity by incorporating a function of the error

term from the outcome equation directly into the network formation specification.

We develop a Bayesian MCMC algorithm for estimation and examine the finite-sample
performance of our estimator through Monte Carlo experiments before applying it to a
network of inter-firm R&D collaborations. Our empirical results confirm the presence of
significant endogeneity. In contrast to a standard SAR model, our proposed estimator
robustly identifies a strong, positive spillover effect, even in specifications that include
contextual effects, demonstrating its utility in overcoming the identification challenges

posed by endogenous network formation.
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8 Appendix

8.1 Figures

(a) MCMC Trace Plots
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(b) Autocorrelation Plots

Figure 1: MCMC diagnostics based on 10,000 draws with a 2,000 burn-in and thinning

interval of 10. Both plots use the same posterior samples.
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(b) Autocorrelation Plots

Figure 2: MCMC diagnostics for the model without contextual effects, based on 100,000 total
draws with a 15,000 burn-in period. Both panels correspond to the same thinned posterior

samples, retaining every 10th iteration.
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Figure 3: MCMC diagnostics for the model including contextual effects, based on 100,000
total draws with a 15,000 burn-in period. Both panels correspond to the same thinned
posterior samples, retaining every 10th iteration.

8.2 Posterior Distribution for 6

The full-conditional density for § = (I, §)’ is proportional to its block-diagonal Gaus-
sian prior and to the dyadic (link) likelihood that contains 6:

r H. 0
O~N (0, H! o= — H,=| ~F% .
i (é)’—ﬂ (0:&>

e Link likelihood Au;j:

e Prior:

For every dyad (i, j) with j # i and every period t = 1,...,T. The latent-utility
equation is
iid
Az = Cijul' + e + mijes Mije ~ N (0, 1),

which is linear in 6. Denoting @Q;j; = (Ciji, ;). The SAR model does not involve

0 once g is treated as known in this step.

1. Log-Prior for 6

1
log p(8) = —5(0 —0)" Hy(0 — 0) + const

2. Log-Likelihood from Au,j; (all 4,5 #1i,t)
The model is A'U/Ut = Q”ta —+ Nijts with Nijt ~ N(O, 1) Log—likelihood:
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T n n

1
logp(Au | 6,-) = —5 Z Z Z(Auiﬁ — Qij10)? + const

t=1 i=1 j=1

JF#i
3. Combined Log-Posterior
1 T
logp(0|-) = —5(0 —6)"Hy(6 - 0)
1L
2 Z Z Z(A“ijt — Qij10)? + const
=1 i=1 j‘?‘
j#i

4. Expand and Collect Terms

e Quadratic term (coefficient of 6" 8):

T n n

Hot 3D D> Qi
=1 i=1 j=1
J#
e Linear term (coefficient of 6):

T n n

Hob+ D ) Qulus
t=1 i=1 j=1
J#i

5. Posterior Parameters

T n n

Ho = Ho+ Z Z Z QiTthijta

t=1 i=1 j=1
J#i

T n n

Hy' | Ho0 + 333" QF Auiye

t=1 i=1 j=1
J#i

S
|

8.3 Posterior Distribution of 3

The full conditional density for the slope vector p(8 | y, Au,-) is proportional to its

Gaussian prior and to every likelihood term that contains 3:
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e Prior: 3~ N(8,H;'")

e Outcome likelihood y;;: for every individual ¢ = 1,...,n and every period
t=1,...,T, because B enters the mean through the regressor block Z;;3.

e Dyadic likelihood Auwj;: for every sendera€ “receiver pair (i,j) with j # ¢

across the same T' periods, since the sendera€s error term ¢;; = r;; — Z;;/3 appears

in the latent utility equation whenever ¢ is the sender.

1. Log-Prior for 3

log p(8) = —5(8 — ) Hal( — B) + const

2. Log-Likelihood from y;; (all i,t)

Tit = Yit — A E WijtYje — QG — T
Jj=1
it = Tit — L3
T
(1 — ZyB)? + const
1

1 n

202
€ =1 t=

logp(y [ -)
3. Log-Likelihood from Au,j; (all i,5 # i,t)

Sijt = Auzgt CitY1 — CjtV2 — CijtV3

Auije = Sije + 0it + Mije,  €it = Tt — L3

n T
logp(Au | ) = —% Z Z Z<S"jt —8(ryy — ZyB))* + const

i=1 t=1 j#i

4. Combined Log-Posterior

logp(8 1) = —5(8- BV Hs(B~ )

n

T
o 3~ Zu)?
€ =1

t=1

T
Z Z (sijt — 0(rie — Zuf3))? + const

i=1 t=1 j#i

n

5. Expand and Collect Terms
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Quadratic Term:

n T
H,@—i-—ZZZ{t zt+5QZZZZthzt_Hﬁ+( +52n_1> ZZZ/t it

Ezltl =1 t=1 j#i =1 t=1

Linear Term:

n T n T
1
Hﬁg+( +a2n_1) ez 53 Y s,
1 j#i

=1 t= =1 t=1

6. Posterior Parameters

n

T
2:/

Zztlt
i=1 t=1

— 1
Hp = H,@+< +52n—1>

n n T

)Y -5 S

B = H, [HBQ+<1 +8%(n — 1)

=1 t=1 i=1 t=1 j#i
Substituting r;; and s;j:
) 1 n T n
5 = 73 s (G0 0) S (S
Oc i=1 t=1 j=1
n T
—0 Z Z Z (Auz‘jt — Cit1 — CjtY2 — Cz‘jt%) Zz{t
i=1 t=1 j#i

8.4 Posterior Distribution of «;

The full conditional density for a single individual fixed effect p(c; | y, Au,-) is pro-

portional to its Gaussian prior and to every likelihood term that contains «;:

e Prior: a; ~ N (o, H} )

e Outcome likelihood y;;: for the same individual ¢ across all time periods t =
1,...,T, because «; appears in the mean of each y;; only through the index 7.

e Dyadic likelihood Auw,j,: for each pair (i,j) with sender ¢ and j # i, across
the same T' periods, because €;; = Y — A Z?Zl WijtYje — - -+ — a; enters the latent

utility model whenever i is the sender.
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1. Log-Prior:
1
log p(a;) = —5(041» — gi)THai(ozl- — a;) + const

2. Log-Likelihood from y;:

Define residual:
Tit = Yit — A E WitYje — Ty — E wz‘jtfﬂjtﬂz — T
J J

so that e, = ry — ;.

Then the log-likelihood becomes:

—|— const

logp(y | -)

3. Log-Likelihood from Auw,j:
Define:

Sijt = Auzgt Cit 1 — Cjt7Y2 — Cijts,

so that the model is:
Auije = Siji + 0&it + Nijt

and substituting ;; = ri — «y, we get:

T
1
logp(Au | -) = -3 Z Z (8ijt — 0(rir — ;))* 4 const
t=1 j#i
4. Combined Log-Posterior:
logplai | ) =~ Hodl Ly
(0] ;|- = ——=H, (0 — 7”1 —Oéz
&P g e T g2

T
Z Z Sijt — 0T — z))2 + const
=1 j#i

l\DI»—

Expanding and collecting terms:
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5. Posterior Quadratic Term (coefficient of o?):

az+—+52221_ al+—+52 (n—1)

t=1 j#i

Linear Term (coefficient of «;):

T T
1
Hooy+ 25 3 =03, > (s = 0ra)
9e =0 t=1 j#i

6. Posterior Parameters:

The full conditional is:

where:

Substituting expressions for r;; and s;j:

T n n

_ —1 1

a; = H, [ﬂai a; + (02 + 52(” -1) ) E <yzt A E WijelYjt — T — E Wi B2 — Tt)
= j:l j:l

t=1

n

T
—d Z Z Auijt — Cit1 — Cjt7Y2 — Cijtry3>>
t=1 j=1
J#i

8.5 Posterior Distribution of =

The full conditional density for a single time fixed effect p(7; | y, Au, -) is proportional

to its Gaussian prior and to every likelihood term that contains 7;:

e Prior: 7, ~ N(z,, H_!)

e Outcome likelihood y;;: for all individuals « = 1,...,n in the same period ¢,

because 7; appears in the mean of every y;; only through the time index t.
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e Dyadic likelihood Aw;;,: for every dyad (i,j) with ¢ # j in that same period
t, since the sendera€s structural error €;; = y;; — Azyzl WijtYje — Ll — 04 — T

appears in the latent utility equation whenever the time index is ¢.

1. Log-Prior for m;:
1 T
log p(m) = —5(7} —1,)" Hy, (1 — 7,) + const

2. Log-Likelihood from y; at time ¢t:
Define the residual excluding 7;:
Tit = Yit — A Z WigtYjt — Tiff — Z wijt$jt52 -
j=1 j=1

Then e;; = r;; — 74, so the log-likelihood becomes:

n

1
logp(y: | ) = —T‘E 2 (ryy — ) + const
3. Log-Likelihood from Au,;; at time ¢t:
Define:

Sijt = Agje — C1 — CjtY2 — Cijt )3

Then:
Augje = 845t + 084 + Nije

Substitute e;; = riy — 7

1
logp(Auy | -) = D) zzl ]21 (sije — 6(rie — Tt))2 + const
J#
4. Combined Log-Posterior:
logp(r|) = —SH(ri = = g 3 (o =0
t 2 T\ !t 1t 20_2 o 1t t
1 n n
-5 Z Z (8iji — 0(rs — Tt))2 + const
i=1 j=1
J#i
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5. Expand and Collect Terms

Quadratic term (coefficient of 77):

N oo, noo.
HTt—FU—g—F(S ZZl—Hn—F;-ﬁ-é n(n—1)

i=1 j=1 €

J#i

Linear term (coefficient of 7;):

H., 7, + % Z rig — 0 Z Z(Sijt — 0Tit)

€ =1 i=1 j=1
J#i
6. Posterior Parameters
The full conditional is:
=1
Tt NN(TtaHTt )
where:
— n
H, = H; + — + 8*n(n — 1),
o

S

B — 1 n n n
Tt:HTt Htht+ (§+52(n—1)) E rit_5 E E Sijt
€ i=1 i=1 j;l
jF#i

Optionally, substitute expressions for r;; and s;;.:

n

B . 1 n n
T = H, [Hn T, + (; + 52(” - 1)) Z (yit - A Z WijtYjt — T — Z Wy j¢ B2 — 041‘)
) j:].

i=1 Jj=1

n n

—0 Z Z (Augje — ey — Cjey2 — Cije3)

i=1 j=1
J#

8.6 Posterior Distribution of o2

1. Prior Distribution
Given the prior:
o2 ~ Gamma <z, g) ,
€ 272
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the prior density is:

2. Likelihood Contribution
The Gaussian likelihood for €;; (from the SAR model) is:

giw ~ N(0,02), independent for i =1,...,n; t=1,...,T.

The joint likelihood for all e is:
1 T n
p(y | ) o< (02) " exp (—@ > ZE%) :

Substituting 02 = (0-2)71, we get:

ply | ) ox (0722 exp (—"7 ZZsi) .

3. Full Conditional (Proportionality)

The full conditional satisfies:

p(o?|-) oxp(o2?) - ply | ).

Combining Steps 1 and 2:

o T n
G D G ERE N () B o Lt (—"; Zzei)
t=1 i=1
g 1 T n
2
sy yal).

t=1 =1

o« (0%) -l exp (—082

4. Posterior Distribution

Thus, the full conditional posterior is:

T
T 1
0.2 |- ~ Gamma <V+2n : g+ 52 5%) .
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8.7 Unbalanced Panel

Observed sets and counts. For each period t =1,...,T, let
7, = {ie{l,...,n}: (i,t) is observed }, ny = |Z|.
For each individual i, let
Ti = {te{l,...,T}: (i,t) is observed }.

The total number of observed outcomes is Ny = Z;‘FZI 4.

Denote Z; = (Xt7 WtXt)y Lip = ('Tita Zj wz‘jt%‘t); Cz‘jt = (Cita Cjt, Cijt)a Qijt = (Cijta 5it)7
I'= (71,7%,7), 0 = (I",0), 8 = (B1,5), and © = {\, 5, a,7,0.,0}. Let Z, = {i :
(i,t) is observed } and n; := |Z;|. For each t, W} is the n; x n; submatrix of the spatial
weight matrix whose rows/columns are indexed by Z; in the same order as the stacked

outcome vector at t. Recall the SAR residual for each observed (i,1):

nt
it 1= Yit — A E Wirt Yrt — O — Tt — L 3.

r=1

The joint kernel of the observed data

33



P(Y,Au | W,0)

. I~ ©
{(271'0?) /2 |L,, — \Wy| exp 2 5 52t> X exp (—52 Z [Augje — Cijel' — 6 4] >
9e =1 =1 ji

R
=

t=1

Il
1~

1
{(2#05)_”/2 |1, — A\W,| exp —3 _5262t+z Z [Aujy — Cijpl — § 4] ])}

1 =1 j#i

t

. 1
{(2#03) t/2 |1, — AWy| exp ~3 Z Z [Au;jp — WI‘

Li=1 j#i

-2 Z Eit Z [Auj — Cijl| + (% + 6% (ny — 1)) Z 53] ) }
T - 7 T ne g -

= (27(0— ) 2 Zt 1M [ H |[nt — )\Wt ] eXp< Z Z Z Auzgt z]tr
t=1 =1 i=1 j#i

S S e e S v ) £

t=1 i=1  j#i t=1 i=1

Il
=

o
Il

1

Substituting ¢;;:

P(Y,Au | W,0)
T
o (2mo?) 2 Nobs H|I )\Wt]
t=1
T n: nt
X exp ( [Z Z Auzgt ZJtF)
t=1 i=1 j#i

26 Z Z (yzt A Z WiktYkt — Zit3 — o — Tt) Z (Auij — Cijel)

t=1 =1 JFi

T

ng ng 2
+ Z (05_2 + 52(7% - 1)) Z (yit - )\Zwiktykt — Zuf — o — Tt)
i=1 k=1

t=1
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Posterior of 3:

T ne nt
Hs B + Z {(05—2 + 6% (ny — 1)) Zi <yit — /\Zwiktykt - — Tt)
—1

k=1

Posterior of «; (normalization a; = 0):

i =

T
H, = H, + Z o %+ 6% (n — 1)),
=1

T

H, a, + Z { 24+ 8% (n — 1)) <yit — Azwiktykt — Zuf3 — Tt)
k=1
-0 Z (Auijt - Cijt F)}] :

J#i

a = H,

Posterior of 7, (normalization 7, = 0):

H, = H, + Z 24 8% — 1)) = H,, + ny (022 +6%(n, — 1)),
H, 1 + Z { 2+ 0% (ng - 1)) (yit — N> Wik — ZufB — Oéz'>
k=1
- (SZ (Auijt — C’L’jt F)}] .

J#i

?t:H

Posterior for o_? (shape-rate). With the prior 672 ~ Gamma (%, £),

T
V+Et:1nt 9"’21& 1Zz 1 zt)
2 2 '

o2 | rest ~ Gamma(
Posterior of 6 = (I",d). For each observed dyad (i,7,t) with 4,5 € Z; and j # 1,

let Qijt = (Cijt78’it) and Auijt = Qith + U where Mijt ~ N(O, 1) With pI‘iOI‘ 6 ~
N, H5),
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T ne ne
Hy = Hy + > ) QiiQise,

t=1 i=1 j#i

T ng nt
' Hy0 + ZZ ZngtAuijt

t=1 i=1 j#i

|
I

Full conditional density of A

3
Ry

T(A Y, Au, W O{A})
|
1

T
x H I, — AW, | xexp{éz
=

t=1 1 k=1

—% Z (% + 52(”t - 1)) Z <yit - /\Zwiktykt -

k=1

This can be reduced to

7\ | Y, A, W, O[{\})

k= j#i

Log of density:

log m(A | Y Au, W, O] {A})

S

T T t nt nt
x Z log | I, — AWy | — A6 Z (Z wlktykt> Z (Augj —
t=1 t=1 i=1 \k=1 J#i
nt 2
<)\ Z WiktYkt — (yit — ZufB — a; — Tt)) .

3

i( +52nt—1>

t=1

l\)l»—

=1 k=1
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(yzt A Z WiktYrt — it/6 -
1

T T ng nt ng
x H | I,, — A\W, | X exp {—)\5 Z ( wiktykt> Z (Augj —
‘ 1

oy — Tt> Z (Auijt — C’ijtf)

JF

2
Zif3 — a; — Tt)

Cl-jtF)

2
<)\ Z WiktYrt — yzt — Zuf3 — a; — Tt)) ?

Cl-jtF)



Quadratic expansion in A

logm(A Y, Au, W, 0[{\})

-1
T -
Z (% +6%(ny — 1)) (Yit — ZuB — oy — 73) (Z wiktykt>
k=1
-5 Z Z (Z wlktykt> Z (A — Cijl)

t=1 i=1 jF#

A

Since

a T a T ng
i Zlog | I, — \W; | = BN\ Zlog <H(1 - Aﬂrrﬁ))

r=1
T

—Zz—log — Mirt) = Zzl—)\um

t=1 r=1 t=1 r=1

aa)\ logm(A | Y, Au, W, 0[{\})

T n¢ [ T 1 ne ne 2
rt 2
S Y (5 + -1 - A\
— 1 — Ay — (o'g +0%(ne )> - <k21 wzktykt>

T ng e
1
+ <p +6%(ny — 1)) E (Yit — ZuPB — i — 71) wikt!/kt)
1

1=1 k=

T n nt nt
= (Z wz’ktylct> > (A — Ciyl)

JFi

2

O\

ne ne 2
BB 8 (e ) £ (Smen) |
t=1 r=1 Tt t=1 i=1 \k=1

— logm(A | Y, Au, W, O[{\})
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