
Bayesian Estimation of Endogenous Network Effects in

SAR Models: Application to R&D Collaboration

Yajie Xu

University of South Florida

Murat Munkin

University of South Florida

October 24, 2025

[Click here for the most recent version]

Abstract

Selection biases pose a central challenge in estimating spillover effects in spatial

autoregressive (SAR) models, primarily because network formation often depends on

unobservable individual preferences. This paper proposes a novel Bayesian framework

to jointly model both the dynamics of network effects and the formation process.

Specifically, we introduce an explicit latent structure that connects outcomes and

network selection equations in the SAR model through the error terms. This structure

captures both endogenous formation and associated spillover effects simultaneously

while enabling computationally efficient estimation. Estimation is performed via

Markov Chain Monte Carlo (MCMC) methods. We validate the model through a

simulation study and apply it to real-world data on R&D strategic alliance networks.

We find that both the standard and the corrected model confirm the significant roles

of immigrant executives in fostering collaboration and the positive spillover effects

resulting from these alliances. However, the standard deviations are much higher

in the standard model, indicating that ignoring network endogeneity can lead to

imprecise estimates and identification challenges. This paper contributes to a general

framework for estimating endogenous spillover effects and promotes the broader

application of Bayesian methods in causal inference for network data.
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1 Introduction

“We Sapiens rule the world not because we are so wise but because we are the only

animals that can cooperate flexibly in large numbers.”

— Yuval Noah Harari, Nexus

Social and economic networks play a central role in shaping agents’ decisions and out-

comes. With the rapid expansion of information technologies, interactions among individuals

and firms have become increasingly observable, allowing researchers to model interdepen-

dence explicitly. Decisions are rarely made in isolation—agents respond to incentives and

behaviors of their peers, collaborators, and competitors. Recognizing this interdependence,

recent econometric research has focused on identifying and estimating network effects, or

spillover effects, that arise through these linkages. While disciplines such as physics and

computer science emphasize network structure and topology, economists are primarily con-

cerned with the human dimension—strategic decision-making and the causal impact of net-

work structure on individual performance and social welfare.

A central issue in the empirical study of social interactions is the identification of causal-

ity. The workhorse–standard linear-in-means model–seeks to ascertain whether individual

behavior is causally influenced by the average behavior of a reference group. However, as

first formalized by Manski (1993), this model is subject to the ”reflection problem.” In its

general form, the reflection problem makes it impossible to distinguish between three com-

peting hypotheses: endogenous effects (the influence of peers’ average outcomes), contextual

effects (the influence of peers’ average characteristics), and correlated effects (the influence of

shared unobservables or sorting). This is due to the perfect collinearity that arises between

the average group outcome and the average group characteristics, rendering the structural

parameters inseparable.

Even under the restrictive assumption that contextual and correlated effects are ab-

sent—the ”pure endogenous-effects model”—identification is still not guaranteed. Manski

(1993) demonstrates that identification fails under two opposing conditions. First, if indi-

vidual characteristics and group-level average characteristics are statistically independent,

there is insufficient variation to identify the endogenous effect. Conversely, identification

also fails if these characteristics are linearly or functionally dependent. This latter issue

arises, for example, if social groups are defined by an attribute like income, which is also

included as an individual characteristic. Likewise, if students in a classroom share highly

similar individual traits, or if their individual characteristics are perfectly correlated with

the factors that define their group membership, the endogenous effect cannot be identified.

The spatial autoregressive (SAR) model circumvents the reflection problem by leveraging
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the detailed structure of the network. As underscored by Bramoullé et al. (2009), identifica-

tion is achieved if the network exhibits intransitivity—that is, if the friends of an individual’s

friends are not necessarily their own friends.1 This property, common in most real-world net-

works, breaks the perfect collinearity inherent in the linear-in-means model, thus resolving

the reflection problem. However, the SAR specification introduces a different endogeneity

concern: simultaneity. An individual’s outcome influences their peers’ outcomes, and simul-

taneously, their peers’ outcomes influence the individual’s outcome. In the regression, this

means the spatial lag term (WY ) is, by construction, correlated with the error term (ϵ),

rendering standard OLS estimates biased and inconsistent.

Fortunately, the same network structure that solves the reflection problem also provides

a source for valid instrumental variables (IVs). The exogenous characteristics of individuals’

friend (WX) and at a network distance of two or more (e.g., friends’ friends, captured by

terms like W 2X) serve as natural instruments for the endogenous spatial lag. The intuition

for this exclusion restriction is that the characteristics of one’s friends are assumed to affect an

individual’s outcome only indirectly, through their influence on the outcomes of one’s friends.

In addition to this IV strategy, Maximum Likelihood (ML) and the Generalized Method of

Moments (GMM) are also standard approaches used to obtain consistent estimates for SAR

models, assuming the network itself is exogenous.

However, a more fundamental challenge is the endogeneity of the network itself. The

estimation strategies discussed above, are valid only under the assumption that the network

matrix, W , is exogenous. It is is often plausible in the SAR model’s original context of spa-

tial econometrics, where networks represent fixed geographic structures like the adjacency

of cities or states. In most social and economic contexts, however, this exogeneity assump-

tion is highly questionable. Individuals are not randomly assigned to peer groups; they

actively form and dissolve ties through a process of self-selection. If there are unobserved

factors—such as innate ability, motivation, or personal tastes—that influence both an indi-

vidual’s propensity to form friendships and their outcome of interest, the network matrix W

will be correlated with the error term ϵg. This correlation renders the previously mentioned

solutions inconsistent and biased.

A primary strategy for addressing network endogeneity is to adopt a joint modeling ap-

proach that explicitly specifies the network formation process. One prominent method within

this framework is the two-stage instrumental variable (IV) approach. Recognizing the diffi-

culty of finding valid external instruments for an entire network matrix,König et al. (2019),

for example, propose a two-stage strategy to identify the causal effect of R&D spillovers.

In the first stage, they estimate a model of link formation (a logistic regression) to gen-

erate a predicted R&D network. This prediction is based on predetermined dyadic charac-
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teristics, such as whether two firms had a past collaboration, shared a common partner, are

located in the same city, or have similar technological profiles. These variables are assumed

to satisfy the exclusion restriction; that is, they influence the current probability of a link

forming but are assumed not to affect the current outcome of interest directly, other than

through their effect on the network structure. In the second stage, this predicted network

matrix is used to construct valid instruments for the main outcome equation, purging the

estimates of endogeneity bias.

However, this method is not without its challenges. The consistency of the second-stage

estimates is highly dependent on the validity of the first stage. A poorly specified or weakly

predictive first-stage model can lead to weak instruments, which can introduce finite-sample

bias into the final results.

Other prominent methods for addressing network endogeneity include likelihood-based

and control function approaches, both of which often lead to a Bayesian estimation strategy

due to the models’ complexity. For likelihood-based methods, the central challenge is that

the full joint likelihood of the network and outcome equations is often computationally in-

tractable for large networks. This intractability makes both standard Maximum Likelihood

(ML) and full-information Bayesian estimation infeasible. To overcome this, Hsieh et al.

(2025) propose a composite likelihood estimation method. This approach remains compu-

tationally feasible by maximizing an objective function composed of a product of simpler,

conditional log-likelihoods (e.g., the likelihood of the outcomes given the network, and vice-

versa) rather than the full, complex one. Then they implement this by using a Bayesian

Markov chain Monte Carlo (MCMC) approach to estimate the parameters of the compos-

ite likelihood model. This hybrid strategy combines the computational scalability of the

composite likelihood framework with the Bayesian paradigm’s ability to handle unobserved

latent variables through data augmentation. While this tractability comes at the cost of

some statistical inefficiency compared to a full-information method, it makes an otherwise

unsolvable problem estimable.

The control function approach, in the spirit of the classic Heckman (1979) selection

model, addresses endogeneity by modeling its source directly. Pioneered in this context

by Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016), this method intro-

duces unobserved latent variables into both the network formation and outcome models.

Hsieh and Lee (2016) term their specific implementation the Selection-Corrected SAR (SC-

SAR) model. The introduction of these high-dimensional latent variables is what makes the

model’s likelihood intractable for classical estimation methods like ML, which would require

a computationally prohibitive integration step. This is precisely why they turn to Bayesian

estimation. The Bayesian MCMC framework makes the model tractable by treating the
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latent variables as parameters to be estimated via data augmentation, thus avoiding the im-

possible integration problem. This framework has since been extended to dynamic settings,

combining the selection-correction process with the Spatial Dynamic Panel Data (SDPD)

model (Han et al., 2021).

While these latent variable models are intuitive, their implementation can be compu-

tationally demanding and relies on specific distributional assumptions about the unobserv-

ables. This paper, therefore, proposes a more direct and computationally efficient method

to address this endogeneity. Following the joint modeling literature, our approach explicitly

models the correlation between the network formation and outcome equations. However,

instead of relying on high-dimensional latent variables, we model this dependency by incor-

porating the error term from the outcome equation directly into the specification for network

formation.

Given the complex stochastic structure this introduces, we develop a Bayesian MCMC

algorithm for estimation. We first validate the model’s performance through Monte Carlo

simulations. We then apply the model to a network of inter-firm research and development

(R&D) collaborations and compare our estimates to those from a standard SAR model.

Our results reveal a significant correlation on the dynamic of two models, highlighting the

importance of our proposed correction in analyzing network data.

The remainder of the paper is organized as follows. Section 2 presents the model speci-

fication for network formation and the SAR panel data model. The Bayesian identification

strategy is propsed in section 3. Section 4 presnets the simulation studies to test the model

performance. Section 5 includes an empirical study on R&D collaboration networks, then

section 6 concludes the paper.

2 Model

2.1 SAR Model

Consider an environment where individuals form network links and their activity outcomes

are subject to social interactions (peer effects). Let n be the number of individuals.

Let Yt = (y1t, y2t, . . . , ynt)
′ be the n × 1 outcome vector of individuals at time t. Let

Xt = (x1t, x2t, . . . , xnt)
′ denote the n × k matrix of exogenous characteristics at time t. Wt

represents the n × n adjacency matrix at time t, which evolves over time and may not be

symmetric due to a lack of reciprocity. In a given period t, each entry wijt represents the rela-

tionship from individual i to individual j, and is equal to 1 if i claims its relationship with j,

and 0 otherwise. And to avoid a self-loop, the diagonal entries are all zeros. Mathematically,
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wijt = 0 when i = j.

In the matrix form, the model can be written as:

Yt = λWtYt +Xtβ1 +WtXtβ2 + α + ℓτt + εt, t = 1, . . . , T (1)

where λ represents the contemporaneous peer effect, β1 and β2 are the coefficients for the

direct and contextual effects of the covariates; α = (α1, α2, . . . , αn)
′ is the n×1 vector of time-

invariant individual effects, where each αi is the dummy variable equals to 1 for individual

i, and it is time invariant. Define also τ = (τ1, τ2, . . . , τt)
′ as the T × 1 vector of time fixed

effects, where each τt is the dummy variable equals to 1 at time t; ℓ is an n×1 vector of ones;

and εt = (ε1t, ε2t, . . . , εnt)
′ is the vector of stochastic error terms, where εit

i.i.d.∼ N (0, σ2
ε).

For observation i (i = 1, ..., n) we can write

yit = λ
n∑

j=1

wijtyjt + xitβ1 +
n∑

j=1

wijtxjtβ2 + αi + τt + εit, t = 1, . . . , T (2)

Following LeSage and Pace (2009), we can rewrite Equation (1) as

Yt − λWtYt = Xtβ1 +WtXtβ2 + α + ℓnτt + εt

(In − λWt)Yt = Xtβ1 +WtXtβ2 + α + ℓnτt + εt

Yt = (In − λWt)
−1(Xtβ1 +WtXtβ2 + α + ℓnτt + εt)

= (In − λWt)
−1(Xtβ1 +WtXtβ2 + α + ℓnτt) + (In − λWt)

−1εt (3)

εt ∼ N(0, σ2
εIn), t = 1, . . . , T

2.2 Latent Utility

However, due to self-selection, each entry of Wt might be endogenous to Yt. We take a

standard approach of modeling endogeneity through unobserved heterogeneity.

Assume that the binary choice wijt is made based on the difference in latent utilities

derived from the choices of individual i regarding potential friend j defined as

uijt (wijt = 1)− uijt (wijt = 0) = ∆uijt = ψijt + ζijt (4)

where

ψijt = citγ1 + cjtγ2 + cijtγ3.

Random variables εit and ζijt are assumed to be jointly distributed as bivariate normal such

that the correlation between them is generated by unobserved factors simultaneously affect-
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ing the network choice and economic outcome variables. However, instead of introducing

specific latent variables controlling for such unobservables, we write a regression-like equation

ζijt = δεit + ηijt,

where from equation (2)

εit = yit − λ
n∑

j=1

wijtyjt −

(
xitβ1 +

n∑
j=1

wijtxjtβ2 + αi + τt

)
,

and ηijt ∼ N (0, 1) and the equation can be interpreted as defined by the conditional disti-

bution ζijt | εit ∼ N (δεit, 1) based on the joint distribution of εit and ζijt. Since the variance

of the conditional distibution of ∆uijt given εit is fixed identification should not be an issue.

Then the observability condition is

wijt = 1 if ψijt + ζijt > 0

wijt = 0 if ψijt + ζijt ⩽ 0
.

In essence, endogeneity of the spatial choice matrix Wt is modeled through a joint distri-

bution of the errors in the outcomes equation (1) and network choice equation (4) where

(εit, ζijt) ∼ Nn

(
0

0
,

(
σ2
ε σεη

σεη σ2
η

))

such that ζijt | εit ∼ N
(
σεησ

−2
ε εit, σ

2
η − σ2

εησ
−2
ε

)
, where we further denote δ = σεησ

−2
ε and set

σ2
η = 1 + σ2

εησ
−2
ε .

Similar to (Koop et al., 2007), we can express latent variable ∆uijt as a probit model:

∆uijt = citγ1 + cjtγ2 + cijtγ3 + δεit + ηijt, ηijt
i.i.d.∼ N (0, 1) (5)

In this formulation the time and individual fixed effects would cancel out when computing

the difference ∆uijt. Then

wijt =

1 if ∆uijt > 0,

0 if ∆uijt ≤ 0.

2.3 Likelihood

Denoting variables Zt = (Xt,WtXt) , Zit =
(
xit,
∑n

j=1wijtxjt

)
, Cijt = (cit, cjt, cijt), Qijt =

(Cijt, εit), and parameters Γ = (γ1, γ2, γ3)
′, θ′ = (Γ′, δ), β = (β1, β2)

′, Θ = {λ, β, α, τ, σε, θ}.
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Based on Equation (3) and (5), the full conditional kernel can be written as

P (Y,∆u | W,Θ) (6)

∝
{
(2πσ2

ε)
−Tn

2 |I − λWt|T

× exp

(
− 1

2σ2
ε

T∑
t=1

n∑
i=1

[yit − λ
n∑

j=1

wijtyjt − αi − τt − Zitβ]
2

)

× exp

−1

2

T∑
t=1

n∑
i=1

n∑
j ̸=i

(
∆uijt − CijtΓ− δ[yit − λ

n∑
j=1

wijtyjt − αi − τt − Zitβ]

)2
 .

3 Bayesian Estimation

In this section, we provide details of the MCMC algorithm for the SAR model with the latent

utility model to capture the endogenous network formation. The posterior is augmented with

latent variables ∆uijt. The steps of the MCMC algorithm are the following:

1. As denoted above Qijt = (cit, cjt, cijt, εit), θ
′ = (Γ′, δ). Following Koop et al. (2007),

conditionally on εit as well as individual- and dyad-level regressors, the latent ∆uijt

can be drawn from the truncated normal distribution:

∆uijt | Qijt, θ, wijt
ind∼

TN(−∞,0](Qijtθ, 1) if wijt = 0,

TN(0,∞)(Qijtθ, 1) if wijt = 1,

where the notation TN[a,b](µ, σ
2) denotes the normal distribution with mean µ and

variance σ2, truncated to the interval [a, b].

2. Given the prior distribution of γ ∼ N(Γ, H−1
Γ ) and δ ∼ N

(
δ,H−1

δ

)
form the prior for

θ ∼ N (θ,H−1
θ ) such that

θ =

(
Γ

δ

)
,

Hθ =

(
HΓ 0

0 Hδ

)
.
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Then the full conditional distribution of θ is θ ∼ N(θ,H
−1

θ ) where

Hθ = Hθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijtQijt,

θ = H
−1

θ

Hθθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijt∆uijt


3. We previously defined Zit =

(
xit,
∑n

j=1wijtxjt

)
and β′ = (β1, β2). Given the prior

distribution of β ∼ N(β, H−1
β ), the full conditional distribution of β is:

β ∼ N(β, H
−1

β ),

where

Hβ = Hβ +

(
1

σ2
ε

+ δ2(n− 1)

) T∑
t=1

n∑
i=1

Z ′
itZit,

β = H
−1

β

[
Hβ β +

(
1

σ2
ε

+ δ2(n− 1)

) T∑
t=1

n∑
i=1

Z ′
it

(
yit − λ

n∑
j=1

wijtyjt − αi − τt

)

−δ
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Z ′
it(∆uijt − CijtΓ)


4. To ensure identification of the individual fixed and time fixed effects, we impose the

normalization α1 = 0, treating individual 1 as the baseline (Han et al. 2021; Greene

2018). This restriction resolves perfect multicollinearity arising from the inclusion of

full sets of both fixed effects in the absence of an intercept Specifically, the design matrix

suffers from linear dependence because the sum of individual dummies (
∑n

i=1 αi) and

time dummies (
∑T

t=1 τt) both equal a constant vector 1, implying
∑n

i=1 αi−
∑T

t=1 τt = 0.

This violates the full-rank assumption, rendering parameters unidentifiable.

By setting α1 = 0, we eliminate this dependence: the remaining individual dummies

does not add up to 1. Additionally, no corresponding omission of time dummies is

required. Because the model lacks an intercept, the time dummies retain the necessary

role of capturing the overall level of the dependent variable across periods. All T time

effects (τ1, . . . , τT ) remain freely estimated, measuring absolute temporal shifts relative
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to the baseline individual.

Under the prior αi ∼ N
(
αi , H

−1
αi

)
, the full conditional distribution of αi is

αi ∼ N(αi, H
−1

αi
),

where

Hαi
= Hαi

+ T

(
1

σ2
ε

+ δ2(n− 1)

)
,

αi = H
−1

αi

[
Hαi

αi +

(
1

σ2
ε

+ δ2(n− 1)

) T∑
t=1

(
yit − λ

n∑
j=1

wijtyjt − Zitβ − τt

)

−δ
T∑
t=1

n∑
j=1
j ̸=i

(∆uijt − CijtΓ))


5. Given the prior distribution of τt ∼ N(τ t, H

−1
τt ), the full conditional distribution of for

each τt is:

τt ∼ N(τ t, H
−1

τt ),

where

Hτt = Hτt + n

(
1

σ2
ε

+ δ2(n− 1)

)
,

τ t = H
−1

τt

[
Hτt τ t +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

(
yit − λ

n∑
j=1

wijtyjt − Zitβ − αi

)

−δ
n∑

i=1

n∑
j=1
j ̸=i

(∆uijt − CijtΓ)


6. The full conditional of σ−2

ε , given the prior

σ−2
ε ∼ Gamma

(ν
2
,
g

2

)
,

is
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σ−2
ε ∼ Gamma

(
ν + nT

2
,
g

2
+

1

2

T∑
t=1

n∑
i=1

ε2it

)
.

7. Given the prior λ ∼ Uniform(−1, 1), we sample λ from the full conditional distribution:

P (λ | Y,∆u,W,Θ) ∝ π(λ) · P (Y,∆u | W,Θ),

where the likelihood is given by Equation (6):

To sample from the full conditional of λ, we designed a Metropolis-Hastings (MH) step

with a proposal density following LeSage (1997); LeSage and Pace (2009); Hsieh and

Lee (2016); Han et al. (2021).

S1.1: Propose λ̃ ∼ N(λ(q−1), cλ), where cλ is adjusted during iterations to achieve

an acceptance rate between 40% and 60%. Check whether λ̃ satisfies the stability

condition implied by the prior. If not, redraw λ̃ until it satisfies the condition.

S1.2: With acceptance probability

Pr
(
λ(q−1), λ̃

)
= min

1,
T∏
t=1

n∏
i=1

p
(
yit | Wt, λ̃, β, αi, τt, σ

−2
ε

)
p (yit | Wt, λ(q−1), β, αi, τt, σ−2

ε )
×

π
(
λ̃
)

π (λ(q−1))


update λ(q) = λ̃; otherwise, set λ(q) = λ(q−1).

4 Simulation Study

This simulation study jointly estimates the latent utility and SAR models. The data-

generating process (DGP) follows the SAR specification in equation (1) and the latent

utility model in equation (4). The simulated panel consists of 100 firms across 5 sectors

observed over 20 years, controlling for both time and sector fixed effects. This setup

is designed to approximate the structure of the empirical application discussed later.

Table 1 reports the posterior means, standard deviations, and credible intervals from

the Bayesian estimation alongside the true parameter values used in the DGP. Overall,

the model reproduces the true parameters with reasonable accuracy. The posterior

means are close to the true values, and the 95% credible intervals typically include the

true parameters. The mean-to-standard-deviation ratios suggest that most coefficients
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Table 1: Monte Carlo experiment results

Parameter True Mean SD Ratio ACF20 CI95

λ 0.300 0.279 0.018 15.507 0.089 0.247, 0.316
β0 0.500 0.532 0.039 13.467 0.008 0.453, 0.609
β1 1.000 0.991 0.007 147.120 0.053 0.978, 1.005
β2 1.000 1.012 0.007 154.350 0.101 1.000, 1.026
β3 1.000 1.000 0.007 150.490 −0.009 0.987, 1.014
β4 1.000 1.006 0.007 153.140 0.024 0.993, 1.019
σ2 1.000 1.053 0.033 31.477 0.029 0.992, 1.124

δ −0.500 −0.505 0.004 −139.530 −0.012 −0.512, −0.498
γ0 0.700 0.698 0.004 176.360 0.031 0.690, 0.706
γ1 0.100 0.100 0.003 29.536 −0.033 0.093, 0.106
γ2 0.500 0.502 0.004 135.480 −0.033 0.495, 0.510
γ3 0.600 0.599 0.004 143.200 −0.031 0.591, 0.607
γ4 0.200 0.192 0.003 56.188 −0.019 0.186, 0.200
γ5 0.300 0.296 0.004 81.945 0.000 0.289, 0.303
γ6 0.200 0.203 0.004 57.138 0.020 0.196, 0.210

Notes: MCMC diagnostics for the simulated SAR–MCMC model based on 10,000 total
draws with a 2,000 burn-in period. Posterior samples are thinned by retaining every
10th iteration.

are estimated with relatively high precision. As shown in figure 1, the trace plots

indicate stable chains, and after thinning, the autocorrelation functions decay rapidly,

suggesting satisfactory convergence.

The estimated spillover parameter is λ̂ = 0.279 with a 95% credible interval of [0.247, 0.316],

which is close to the true value of 0.3. Similarly, the estimated endogeneity parameter

δ̂ = −0.505 (95% CI [−0.512,−0.498]) aligns closely with the true value of −0.5. These

results indicate that the model adequately captures the dependence between the latent

utility and the SAR disturbances.

Lag-20 autocorrelations are below 0.1 for all parameters, implying satisfactory chain

independence under a thinning interval of 10. Slightly higher persistence is observed

for λ and β2, but both remain within acceptable limits. Overall, the simulation pro-

vides evidence that the proposed model yields reliable estimates for both spatial and

structural parameters in moderately sized panel data.
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5 Empirical Application

5.1 Data Summary

The R&D alliance data from 2003 to 2022 are obtained from the SDC Joint Ventures

& Strategic Alliances Database (König et al. 2019; Schilling 2009). This database

is chosen for its comprehensive coverage of inter-firm R&D collaborations, drawing

from a wide range of sources, including SEC filings, international equivalents, trade

publications, and news reports. To focus on innovation-oriented partnerships, only

alliances explicitly classified as R&D collaborations are included in the sample.

Over the past two decades, several firms in the dataset underwent mergers and ac-

quisitions (M&A). Following the approach of König et al. (2019), it is assumed that

acquiring firms inherit all existing R&D collaborations of the target firms. Information

on M&A events is obtained from Thomson Reuters’ SDC M&A and S&P Compustat

databases, while firm-level financial data are collected from S&P Compustat and Fi-

nancial Modeling Prep.

The analysis focuses exclusively on publicly listed pharmaceutical firms with Standard

Industrial Classification (SIC) code 283, which represents the industry with the highest

number of R&D collaborations (Hsieh et al. 2025).1 Following Hsieh et al. (2025) and

König et al. (2019), all financial variables are deflated by the Consumer Price Index

(CPI) of the firm’s home country, expressed in millions of U.S. dollars, and transformed

into natural logarithms. Output is measured as the logarithm of annual revenue, R&D

effort as the logarithm of R&D expenditures, and Productivity as the one-year lag of

R&D capital stock, computed using a 15% annual depreciation rate. Table 2 presents

the full list of variables and descriptive statistics.

Information about senior executive officers is compiled from multiple sources. The

primary source is firms’ annual reports filed with the Securities and Exchange Com-

mission (SEC), which contain their names and brief biographies. This information is

further cross-referenced and supplemented using official company websites, Wikipedia,

LinkedIn, WikiTree, Bloomberg, Encyclopedia.com, NNDB, WBE, and various media

reports.

Because birthplace information is occasionally unavailable, an inferential approach is

adopted: the country of the university where an executive obtained their bachelor’s

1According to Bloom et al. (2013), R&D activities are predominantly concentrated among publicly traded
firms, suggesting that this sample captures the majority of innovation efforts.
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Table 2: Summary statistics for firm-level variables (SAR sample)

Variable Mean SD Median Min Max

Output 4.181 3.668 4.085 -7.724 11.231
LongTermDebt 2.678 3.636 1.559 -7.612 10.690
CostOfRevenue 3.072 3.526 2.458 -8.510 10.233
R&D 3.316 2.685 3.199 -8.023 16.913
Productivity 4.440 2.999 4.548 -5.521 16.913

Observations 3,121

Notes: All financial variables are deflated by the Consumer
Price Index (CPI) of firm’s home country, expressed in mil-
lions of U.S. dollars, and transformed into natural logarithms.
Output is measured as the logarithm of firms’ annual revenue,
R&D effort as the logarithm of R&D expenditures, and Pro-
ductivity as the one-year lag of R&D capital stock, computed
using a 15% annual depreciation rate.

degree is used as a proxy for birthplace (Mahroum and Ansari 2017). Executives who

obtained their undergraduate degrees outside the country where their firm is head-

quartered are classified as immigrants. Since some individuals may have immigrated

at a young age and completed their education in the United States, this approach may

undercount immigrant executives; therefore, the resulting estimates represent a lower

bound of immigrants’ contribution to U.S. executive leadership.

To isolate the influence of immigrant executives in the U.S. context, all executives of

non-U.S. firms are assumed to have been born in the same country where their firm

is located. This assumption is supported by several observations. First, immigrant

executives are considerably more prevalent in the United States than elsewhere, par-

ticularly in technology and healthcare sectors (Mahroum and Ansari 2017). In contrast,

firms in many Asian and African countries tend to hire domestic executives due to cul-

tural, linguistic, or policy-related barriers (Arp et al. 2013; Platonova and Urso 2013;

Flahaux and De Haas 2016). In Europe, while cross-country mobility exists, cultural

proximity often limits executive diversity. Moreover, research indicates that compared

to the United States, European countries have historically maintained less attractive

immigration policies for highly skilled workers, leading to a persistent “brain drain”

toward the U.S. (Mahroum 1999; Mahroum 2000; Mahroum 2001; Prato 2024).

The dyadic variables, reported in Table 3, capture both relational and demographic

characteristics between firm pairs. The variable ImmigrantExecutive equals one if at

least one senior executive in either firm is an immigrant. SameCountryOfBirth equals

one if at least one pair of executives from the two firms was born in the same country.

Similarly, OldFriends equals one if the two firms had an R&D alliance prior to the
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Table 3: Summary statistics for dyadic/network variables

Variable Mean SD Median Min Max

ImmigrantExecutive 0.470 0.499 0.000 0.000 1.000
SameCountryOfBirth 0.290 0.454 0.000 0.000 1.000
OldFriends 0.014 0.136 0.000 0.000 4.000
CommonFriends 0.087 0.281 0.000 0.000 1.000
SameCity 0.007 0.084 0.000 0.000 1.000
AveOutput 4.172 2.602 4.132 -6.928 11.194
AveDebt 2.663 2.604 2.529 -6.000 10.614
AveCost 3.062 2.504 3.043 -7.479 10.176
AveR&D 3.307 1.915 3.215 -6.754 13.109
AveProductivity 4.418 2.237 4.486 -4.345 13.797
DifOutput 4.182 3.029 3.633 0.000 18.679
DifDebt 3.937 3.182 3.443 0.000 18.244
DifCost 3.929 3.030 3.525 0.000 18.565
DifR&D 2.972 2.300 2.535 0.000 24.785
DifProductivity 3.128 2.493 2.620 0.000 20.604
NetworkDensity 0.005 0.071 0.000 0.000 1.000

Observations 254,910

Notes: Binary indicators (ImmigrantExecutive, SameCountryOf-
Birth, OldFriends, CommonFriends, and SameCity) take the value
one when the corresponding relational or spatial condition holds be-
tween two firms and zero otherwise. Variables prefixed by Ave repre-
sent the average of firm-level financial and innovation characteristics
within each dyad, while those prefixed by Dif denote the absolute
differences between the two firms, capturing heterogeneity in size,
resources, and technological capability. All continuous variables are
expressed in natural logarithms and deflated via the Consumer Price
Index (CPI) of the firm’s home country, and converted to U.S. dollars.
NetworkDensity measures the share of realized links among all possi-
ble firm pairs in the observed R&D collaboration network. Summary
statistics are computed for the unbalanced panel of 254,910 firm–pair
observations covering 2004–2022.

current period, and CommonFriends equals one if they shared at least one collaborator

before forming the current alliance. SameCity equals one if the two firms are located

in the same city. Together, these binary indicators characterize the social and spatial

proximity that may influence the formation of interfirm R&D collaborations.

In addition to these binary measures, the dataset includes continuous variables that

describe firm-level characteristics averaged or differenced across each dyad. Variables

beginning with Ave (e.g., AveOutput, AveDebt, AveCost, AveR&D, and AveProductiv-

ity) denote the average levels of the corresponding firm attributes between the two firms

in each pair, capturing the overall scale or intensity of their financial and innovation

activities. Variables beginning with Dif (e.g., DifOutput, DifDebt, DifCost, DifR&D,

and DifProductivity) measure the absolute differences in these attributes between the
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two firms, reflecting heterogeneity in size, resource endowment, and technological ca-

pability. Finally, NetworkDensity represents the proportion of realized connections

among all potential firm pairs within the observed network, serving as a measure of

the overall connectivity of the R&D collaboration network. All continuous variables

are transformed using logarithmic transformations to reduce skewness and facilitate

comparison across variables.

5.2 Estimation Results

The Bayesian estimation is implemented using Markov chain Monte Carlo (MCMC)

sampling with 100,000 iterations, discarding the initial 15,000 iterations as burn-in and

retaining every tenth draw to reduce serial correlation. Posterior means and standard

deviations computed from the retained draws are reported as point estimates. Conver-

gence is verified following standard diagnostics (Geweke, 1992; Raftery and Lewis, 1992;

Heidelberger and Welch, 1983). Table 4 and 6 reports the results without contextual

effects, while Table 5 and 7 incorporates spatially lagged (contextual) covariates.

Table 4: SAR (no contextual effects): OLS vs. Bayesian

OLS Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

λ 0.046 0.012 0.050 0.007 7.692 0.013 0.037, 0.064
Constant 0.967 0.323 -0.228 0.988 -0.231 0.496 -2.144, 1.774
LongTermDebt 0.082 0.012 0.113 0.007 15.957 0.004 0.099, 0.127
CostOfRevenue 0.794 0.011 0.514 0.007 75.919 -0.010 0.501, 0.527
R&D 0.246 0.019 0.144 0.010 14.284 0.010 0.125, 0.164
Productivity -0.038 0.016 0.016 0.013 1.275 0.025 -0.009, 0.041
σ2 1.888 – 0.607 0.027 22.677 0.123 0.563, 0.668

Observations 3,121

Notes: Dependent variable: Output. Fixed effects: sector and year. Standard errors for MLE are
IID. σ2 is the square of the empirical residual. RMSE (OLS): 1.368; Adjusted R2: 0.860; Within
R2: 0.858. Bayesian columns report posterior means (Mean), posterior standard deviations (SD),
mean-to-SD ratios (Ratio), lag-20 autocorrelation (ACF20), and 95% credible intervals (CI95),
shown as lower and upper bounds separated by a comma.

The coefficient of primary interest is the endogenous spillover parameter λ, representing

the strength of peer or network interactions in output among firms. Under the nor-

malized network specification, λ measures the average percentage change in a firm’s

output in response to a one-percent change in the average output of its connected

peers (LeSage and Pace, 2009). In both the baseline and contextual specifications, the
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Table 5: SAR with Contextual Effects: OLS vs. Bayesian

OLS Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

λ 0.055 0.122 0.054 0.011 5.077 -0.000 0.033, 0.075
Constant 0.973 0.324 -0.055 1.066 -0.052 0.535 -2.064, 2.174
LongTermDebt 0.082 0.012 0.113 0.007 15.686 -0.018 0.099, 0.127
CostOfRevenue 0.794 0.011 0.514 0.007 74.996 0.023 0.501, 0.528
R&D 0.246 0.019 0.145 0.010 14.045 -0.017 0.125, 0.165
Productivity -0.038 0.016 0.016 0.013 1.262 0.047 -0.009, 0.041
LongTermDebt (Contextual) -0.009 0.072 -0.078 0.020 -3.942 -0.023 -0.117, -0.039
CostOfRevenue (Contextual) -0.038 0.124 0.048 0.032 1.474 0.019 -0.018, 0.110
R&D (Contextual) 0.138 0.112 -0.021 0.038 -0.556 0.030 -0.093, 0.055
Productivity (Contextual) -0.086 0.084 0.030 0.044 0.684 0.032 -0.057, 0.116
σ2 1.890 0.612 0.028 21.645 0.130 0.567, 0.679

Observations 3,121

Notes: Dependent variable: Output. Fixed effects: sector and year. Standard errors for MLE are IID. OLS
SDs are from the regression output. Bayesian columns report posterior means (Mean), posterior standard
deviations (SD), mean-to-SD ratios (Ratio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95%
credible intervals (CI95), shown as lower and upper bounds separated by commas. Contextual variables (e.g.,
LongTermDebt (Contextual)) correspond to the average of cooperators’ covariates.

posterior mean of λ is approximately 0.05 with no zero included in the 95% credible in-

tervals (0.037, 0.064) and (0.033, 0.075), indicating statistically significant endogenous

spillovers. Substantively, these estimates suggest that a 1% increase in the average

output of a firm’s collaborators is associated with roughly a 0.05% increase in the

firm’s own output, holding other factors constant.

The implied social multiplier, defined as (1 − λ)−1 under a normalized network, is

approximately 1.053. This indicates that, on average, a one-unit exogenous increase

in output at the firm level ultimately generates a 5.3% larger equilibrium response

in the aggregate network through feedback effects among connected firms. Such am-

plification highlights the economic significance of interfirm interdependencies in R&D

collaboration networks: local improvements in productivity propagate beyond the di-

rectly affected firms, reinforcing aggregate output through repeated spillovers.

The Bayesian results are overally consistent with the OLS estimates, though the

Bayesian posteriors yield slightly larger and more precise estimates for the spillover

effect. This finding reflects the Bayesian model’s ability to account for uncertainty

in the joint distribution of the parameters and to mitigate small-sample bias through

hierarchical shrinkage. When contextual effects are included, the OLS estimate of λ

becomes statistically insignificant, likely because the contextual covariates absorb some

of the between-firm variation. However, the Bayesian estimate of λ remains credibly
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different from zero, underscoring the robustness of the spillover mechanism even after

controlling for network-level covariates.

For the own-firm characteristics, the coefficients on LongTermDebt, CostOfRevenue,

and R&D remain positive and significant across specifications, indicating that capital

structure and R&D intensity are key drivers of output growth. In contrast, the coeffi-

cient on Productivity is small and statistically weak, suggesting diminishing marginal

effects once interfirm dependencies are accounted for. In terms of contextual coef-

ficients, only LongTermDebt (Contextual) is statistically significant, with a posterior

mean of −0.078 and a 95% credible interval of [−0.117, −0.039]. This negative sign

suggests that higher long-term debt levels among a firm’s R&D partners are associated

with a reduction in the focal firm’s output, holding other factors constant. One inter-

pretation is that when partner firms face higher leverage or financial constraints, their

capacity to sustain cooperative innovation and share resources diminishes, which in

turn negatively affects the joint productivity of the network. This finding underscores

the importance of partners’ financial stability in determining the overall effectiveness

of R&D collaborations.

Following LeSage and Pace (2009) and Hsieh and Lee (2016), the estimated coefficients

can be further decomposed into direct, indirect, and total effects. The direct effects

reflect the marginal impact of a firm’s own covariate on its output, whereas the in-

direct effects (or network spillovers) measure how that covariate propagates through

connected peers via (I − λW )−1. The total effect is the sum of both, capturing the

overall equilibrium response of the network to an exogenous change in a given covari-

ate. For instance, the posterior mean of the own-firm long-term debt coefficient implies

that a 1% increase in a firm’s own long-term debt raises its output directly by about

0.11%, while the indirect (network-mediated) effect through connected collaborators

reduces output by approximately 0.01%, yielding a total marginal effect of roughly

0.10%. These magnitudes indicate that although own-firm characteristics remain the

primary determinants of performance, interfirm financial linkages exert a measurable,

and sometimes offsetting, influence on overall productivity through the collaboration

network. Taken together, the positive direct effect and the negative contextual spillover

effect of long-term debt reveal a nuanced dynamic in which financially leveraged firms

may benefit individually but transmit adverse externalities to their partners.

For instance, the posterior mean of the long-term debt coefficient implies that a 1%

increase in a firm’s own long-term debt raises its output directly by about 0.11%, while

the indirect (network-mediated) effect through connected collaborators minus approx-
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imately 0.01%, yielding a total marginal effect of roughly 0.1%. These magnitudes un-

derscore that although own-firm characteristics dominate in explaining performance,

interfirm linkages play a meaningful—albeit secondary—role in adjusting the effects

through the collaboration network.

Table 6: Standard and Bayesian Probit Estimates (without contextual effects)

MLE Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

δ (Endogeneity) – – -0.168 0.023 -7.224 0.065 −0.212, −0.120
Constant -5.047 0.123 -5.351 0.117 -45.791 0.680 −5.573, −5.119
ImmigrantExecutive 0.212 0.034 0.213 0.033 6.391 0.003 0.147, 0.280
SameCountryOfBirth -0.002 0.037 -0.013 0.037 -0.362 -0.001 −0.086, 0.057
OldFriends 1.693 0.032 1.703 0.029 59.367 -0.010 1.648, 1.760
CommonFriends -0.123 0.040 -0.109 0.038 -2.850 0.024 −0.182, −0.034
SameCity -0.158 0.180 -0.185 0.168 -1.103 -0.004 −0.522, 0.135
AveOutput 0.489 0.035 0.629 0.038 16.572 0.491 0.549, 0.701
AveDebt -0.051 0.011 -0.071 0.012 -6.049 0.053 −0.093, −0.047
AveCost -0.194 0.025 -0.262 0.026 -10.097 0.297 −0.312, −0.209
AveR&D 0.096 0.017 0.066 0.016 4.057 0.091 0.035, 0.099
AveProductivity -0.118 0.012 -0.123 0.013 -9.464 0.102 −0.147, −0.097
DifOutput 0.145 0.018 0.182 0.017 10.749 0.391 0.147, 0.214
DifDebt -0.004 0.006 -0.009 0.006 -1.444 0.004 −0.021, 0.004
DifCost -0.039 0.013 -0.052 0.012 -4.227 0.206 −0.076, −0.028
DifR&D 0.024 0.011 0.013 0.011 1.252 0.068 −0.008, 0.034
DifProductivity -0.045 0.009 -0.044 0.009 -4.718 0.089 −0.063, −0.026

Observations 254,910

Notes: MLE (OLS) columns report probit maximum-likelihood estimates and robust standard errors.
Bayesian columns report posterior means, posterior standard deviations (SD), mean-to-SD ratios (Ra-
tio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95% equal-tailed credible intervals (CI95),
presented as lower and upper bounds separated by commas. This specification excludes contextual ef-
fects in the SAR model.

In the estimation of the latent-utility (probit) model, the results from the Bayesian

and standard MLE approaches are largely consistent in both magnitude and statistical

significance. The parameter of primary interest is the endogeneity term δ, which

is negative and statistically significant even under the 95% credible interval in both

specifications. This finding provides evidence of non-negligible endogeneity between

the latent alliance-formation process and firms’ output decisions captured in the SAR

model. The negative sign of δ indicates that unobserved factors lowering the probability

of alliance formation tend to be associated with higher unobserved productivity shocks

in the SAR equation, implying a negative correlation between the residuals of the two

latent processes.

The large and negative constant term (posterior mean ≈ −5.35) is consistent with
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Table 7: Standard and Bayesian Probit Estimates (with contextual effects)

MLE Bayesian

Variable Estimate SD Mean SD Ratio ACF20 CI95

δ (Endogeneity) – – -0.166 0.024 -6.918 0.169 −0.212, −0.118
Constant -5.047 0.123 -5.340 0.144 -37.210 0.795 −5.615, −5.071
ImmigrantExecutive 0.212 0.034 0.212 0.034 6.279 0.021 0.146, 0.279
SameCountryOfBirth -0.002 0.037 -0.014 0.037 -0.377 0.045 −0.086, 0.059
OldFriends 1.693 0.032 1.704 0.029 58.768 -0.018 1.648, 1.761
CommonFriends -0.123 0.040 -0.112 0.039 -2.832 0.002 −0.189, −0.036
SameCity -0.158 0.180 -0.188 0.171 -1.101 0.020 −0.534, 0.130
AveOutput 0.489 0.035 0.625 0.044 14.131 0.634 0.538, 0.714
AveDebt -0.051 0.011 -0.070 0.012 -5.816 0.087 −0.093, −0.046
AveCost -0.194 0.025 -0.261 0.028 -9.472 0.342 −0.315, −0.207
AveR&D 0.096 0.017 0.065 0.018 3.712 0.159 0.031, 0.100
AveProductivity -0.118 0.012 -0.121 0.013 -9.585 0.049 −0.146, −0.096
DifOutput 0.145 0.018 0.181 0.019 9.388 0.503 0.142, 0.219
DifDebt -0.004 0.006 -0.009 0.006 -1.466 0.068 −0.022, 0.003
DifCost -0.039 0.013 -0.052 0.013 -4.016 0.260 −0.077, −0.027
DifR&D 0.024 0.011 0.015 0.011 1.369 0.064 −0.007, 0.035
DifProductivity -0.045 0.009 -0.045 0.009 -4.746 0.072 −0.063, −0.026

Observations 254,910

Notes: MLE (OLS) columns report probit maximum-likelihood estimates and robust standard errors.
Bayesian columns report posterior means, posterior standard deviations (SD), mean-to-SD ratios (Ra-
tio), lag-20 autocorrelation of the MCMC chain (ACF20), and 95% equal-tailed credible intervals (CI95),
presented as lower and upper bounds separated by commas. The SAR model includes contextual effects.

the sparsity of the observed network, reflecting the empirical difficulty of establishing

successful R&D strategic alliances among firms. Among firm-pair characteristics, the

positive and statistically significant coefficient on ImmigrantExecutive highlights the

role of immigrant executives in facilitating cross-firm cooperation, potentially through

broader international networks and cultural openness. By contrast, the coefficient on

SameCountryOfBirth is negative but statistically insignificant, suggesting that shared

nationality alone does not drive alliance formation—a result that may reflect an open

and cosmopolitan orientation among collaborating firms. The positive and highly

significant coefficient on OldFriends underscores the importance of relational trust and

accumulated experience in sustaining interfirm collaboration. In contrast, the negative

coefficient on CommonFriends suggests that pharmaceutical firms may not rely heavily

on indirect acquaintances or third-party recommendations when seeking new R&D

partners, possibly reflecting the sector’s emphasis on confidentiality and specialized

expertise. Meanwhile, the negative but insignificant coefficient on SameCity indicates

that geographic proximity plays a limited role once social and strategic linkages are

controlled for.
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The coefficients on the average variables (AveDebt, AveCost, AveOutput, and AveR&D)

highlight the importance of joint financial soundness and research capacity in facili-

tating alliance formation—firms prefer partners that are both financially stable and

technologically capable. Finally, the results for the difference variables (DifOutput,

DifR&D, etc.) provide evidence consistent with homophily in partnership formation:

firms tend to collaborate with others that are similar in performance and innovation

intensity. The positive and significant effects of DifOutput and DifR&D indicate a

pattern of strategic complementarity—suggesting that firms also seek partners whose

strengths can compensate for their own weaknesses, reflecting a balance between sim-

ilarity and complementarity in R&D cooperation.

6 Conclusion

This paper develops and estimates a structural model that extends the Spatial Autore-

gressive (SAR) framework to account for endogenous network formation. When the

spatial weight matrix is endogenously determined—meaning it is correlated with the

disturbances of the SAR model—standard estimators become inconsistent, leading to

endogeneity and selection bias in the outcome equation.

While the literature has proposed powerful solutions, such as control function ap-

proaches using high-dimensional latent variables or composite likelihood methods ,

these can be computationally demanding and rely on specific assumptions about the

unobserved drivers of network formation. This paper, therefore, proposes a more direct

and computationally tractable joint modeling approach. Instead of introducing latent

variables, we explicitly model the endogeneity by incorporating a function of the error

term from the outcome equation directly into the network formation specification.

We develop a Bayesian MCMC algorithm for estimation and examine the finite-sample

performance of our estimator through Monte Carlo experiments before applying it to a

network of inter-firm R&D collaborations. Our empirical results confirm the presence of

significant endogeneity. In contrast to a standard SAR model, our proposed estimator

robustly identifies a strong, positive spillover effect, even in specifications that include

contextual effects, demonstrating its utility in overcoming the identification challenges

posed by endogenous network formation.

20



7 Acknowledgment

The authors are grateful for the advice received from Andrei Barbos, Vincent Boucher,

Bobby W. Chung, William Greene, and Michael D. König, as well as for the support

from the Department of Economics. Appreciation is also given for the data collection

efforts of Rezuanul Huq Rafi, Mohaimin Chowdhury, Safayet Hossain Tushar, Albab

Amin Beky, Fatema Sobnam Moumita, Md Ifteker Chowdhury, MD. Borhan Uddin,

Md. Nafiz Imtiaz, MD. Sadik Rahman, Rahul Barua, and Shahida Aktar.

References

Arp, F., Hutchings, K., and A. Smith, W. (2013). Foreign executives in local organisa-

tions: An exploration of differences to other types of expatriates. Journal of Global

Mobility, 1(3):312–335.

Bloom, N., Schankerman, M., and Van Reenen, J. (2013). Identifying technology

spillovers and product market rivalry. Econometrica, 81(4):1347–1393.

Bramoullé, Y., Djebbari, H., and Fortin, B. (2009). Identification of peer effects through

social networks. Journal of econometrics, 150(1):41–55.

Flahaux, M.-L. and De Haas, H. (2016). African migration: trends, patterns, drivers.

Comparative migration studies, 4:1–25.

Goldsmith-Pinkham, P. and Imbens, G. W. (2013). Social networks and the identifi-

cation of peer effects. Journal of Business & Economic Statistics, 31(3):253–264.

Greene, W. H. (2018). Econometric Analysis. Pearson, 8 edition.

Han, X., Hsieh, C.-S., and and, S. I. M. K. (2021). Spatial modeling approach for dy-

namic network formation and interactions. Journal of Business & Economic Statis-

tics, 39(1):120–135.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica,

47(1):153–161.

Hsieh, C.-S., König, M. D., and Liu, X. (2025). Endogenous technology spillovers in

r&d collaboration networks. The RAND Journal of Economics, n/a(n/a).

21



Hsieh, C.-S. and Lee, L. F. (2016). A social interactions model with endogenous

friendship formation and selectivity. Journal of Applied Econometrics, 31(2):301–

319.

König, M. D., Liu, X., and Zenou, Y. (2019). R&d networks: Theory, empirics, and

policy implications. Review of Economics and Statistics, 101(3):476–491.

Koop, G., Poirier, D. J., and Tobias, J. L. (2007). Bayesian Econometric Methods.

Econometric Exercises. Cambridge University Press.

LeSage, J. and Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and

Hall/CRC.

LeSage, J. P. (1997). Bayesian estimation of spatial autoregressive models. Interna-

tional Regional Science Review, 20(1-2):113–129.

Mahroum, S. (1999). Competing for the highly skilled: Europe in perspective. Science

and Public Policy, 26(1):17–25.

Mahroum, S. (2000). Highly skilled globetrotters: mapping the international migration

of human capital. R&D Management, 30(1):23–32.

Mahroum, S. (2001). Europe and the immigration of highly skilled labour. Interna-

tional Migration, 39(5):27–43.

Mahroum, S. and Ansari, R. (2017). What the data tells us about immigrant executives

in the us. Harvard Business Review Digital Article, November, 29.

Manski, C. F. (1993). Identification of endogenous social effects: The reflection prob-

lem. The review of economic studies, 60(3):531–542.

Platonova, A. and Urso, G. (2013). Asian immigration to the european union, united

states and canada: an initial comparison. Journal of Global Policy and Governance,

1(2):143–156.

Prato, M. (2024). The global race for talent: Brain drain, knowledge transfer, and

growth. The Quarterly Journal of Economics, 140(1):165–238.

Schilling, M. A. (2009). Understanding the alliance data. Strategic Management Jour-

nal, 30(3):233–260.

22



8 Appendix

8.1 Figures

(a) MCMC Trace Plots (b) Autocorrelation Plots

Figure 1: MCMC diagnostics based on 10,000 draws with a 2,000 burn-in and thinning
interval of 10. Both plots use the same posterior samples.

(a) MCMC Trace Plots (b) Autocorrelation Plots

Figure 2: MCMC diagnostics for the model without contextual effects, based on 100,000 total
draws with a 15,000 burn-in period. Both panels correspond to the same thinned posterior
samples, retaining every 10th iteration.
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(a) MCMC Trace Plots (b) Autocorrelation Plots

Figure 3: MCMC diagnostics for the model including contextual effects, based on 100,000
total draws with a 15,000 burn-in period. Both panels correspond to the same thinned
posterior samples, retaining every 10th iteration.

8.2 Posterior Distribution for θ

The full-conditional density for θ = (Γ′, δ)′ is proportional to its block-diagonal Gaus-

sian prior and to the dyadic (link) likelihood that contains θ:

• Prior:

θ ∼ N
(
θ, H−1

θ

)
, θ =

(
Γ

δ

)
, Hθ =

(
HΓ 0

0 Hδ

)
.

• Link likelihood ∆uijt:

For every dyad (i, j) with j ̸= i and every period t = 1, . . . , T . The latent-utility

equation is

∆uijt = CijtΓ + δ εit + ηijt, ηijt
iid∼ N (0, 1),

which is linear in θ. Denoting Qijt = (Cijt, εit). The SAR model does not involve

θ once εit is treated as known in this step.

1. Log-Prior for θ

log p(θ) = −1

2
(θ − θ)⊤Hθ(θ − θ) + const

2. Log-Likelihood from ∆uijt (all i, j ̸= i, t)

The model is ∆uijt = Qijtθ + ηijt, with ηijt ∼ N (0, 1). Log-likelihood:
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log p(∆u | θ, ·) = −1

2

T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

(∆uijt −Qijtθ)
2 + const

3. Combined Log-Posterior

log p(θ | ·) = −1

2
(θ − θ)⊤Hθ(θ − θ)

−1

2

T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

(∆uijt −Qijtθ)
2 + const

4. Expand and Collect Terms

• Quadratic term (coefficient of θ⊤θ):

Hθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijtQijt

• Linear term (coefficient of θ):

Hθθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijt∆uijt

5. Posterior Parameters

Hθ = Hθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijtQijt,

θ = H
−1

θ

Hθθ +
T∑
t=1

n∑
i=1

n∑
j=1
j ̸=i

Q⊤
ijt∆uijt


8.3 Posterior Distribution of β

The full conditional density for the slope vector p(β | y,∆u, ·) is proportional to its

Gaussian prior and to every likelihood term that contains β:
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• Prior: β ∼ N (β, H−1
β )

• Outcome likelihood yit: for every individual i = 1, . . . , n and every period

t = 1, . . . , T , because β enters the mean through the regressor block Zitβ.

• Dyadic likelihood ∆uijt: for every senderâe“receiver pair (i, j) with j ̸= i

across the same T periods, since the senderâes error term εit = rit−Zitβ appears

in the latent utility equation whenever i is the sender.

1. Log-Prior for β

log p(β) = −1

2
(β − β)′Hβ(β − β) + const

2. Log-Likelihood from yit (all i, t)

rit = yit − λ
n∑

j=1

wijtyjt − αi − τt

εit = rit − Zitβ

log p(y | ·) = − 1

2σ2
ε

n∑
i=1

T∑
t=1

(rit − Zitβ)
2 + const

3. Log-Likelihood from ∆uijt (all i, j ̸= i, t)

sijt = ∆uijt − citγ1 − cjtγ2 − cijtγ3

∆uijt = sijt + δεit + ηijt, εit = rit − Zitβ

log p(∆u | ·) = −1

2

n∑
i=1

T∑
t=1

∑
j ̸=i

(sijt − δ(rit − Zitβ))
2 + const

4. Combined Log-Posterior

log p(β | ·) = −1

2
(β − β)′Hβ(β − β)

− 1

2σ2
ε

n∑
i=1

T∑
t=1

(rit − Zitβ)
2

−1

2

n∑
i=1

T∑
t=1

∑
j ̸=i

(sijt − δ(rit − Zitβ))
2 + const

5. Expand and Collect Terms
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Quadratic Term:

Hβ +
1

σ2
ε

n∑
i=1

T∑
t=1

Z ′
itZit + δ2

n∑
i=1

T∑
t=1

∑
j ̸=i

Z ′
itZit = Hβ +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

T∑
t=1

Z ′
itZit

Linear Term:

Hβ β +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

T∑
t=1

ritZ
′
it − δ

n∑
i=1

T∑
t=1

∑
j ̸=i

sijtZ
′
it

6. Posterior Parameters

Hβ = Hβ +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

T∑
t=1

Z ′
itZit

β = H
−1

β

[
Hβ β +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

T∑
t=1

ritZ
′
it − δ

n∑
i=1

T∑
t=1

∑
j ̸=i

sijtZ
′
it

]

Substituting rit and sijt:

β = H
−1

β

[
Hβ β +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

T∑
t=1

(
yit − λ

n∑
j=1

wijtyjt − αi − τt

)
Z ′

it

−δ
n∑

i=1

T∑
t=1

∑
j ̸=i

(∆uijt − citγ1 − cjtγ2 − cijtγ3)Z
′
it

]

8.4 Posterior Distribution of αi

The full conditional density for a single individual fixed effect p(αi | y,∆u, ·) is pro-

portional to its Gaussian prior and to every likelihood term that contains αi:

• Prior: αi ∼ N (αi, H
−1
αi

)

• Outcome likelihood yit: for the same individual i across all time periods t =

1, . . . , T , because αi appears in the mean of each yit only through the index i.

• Dyadic likelihood ∆uijt: for each pair (i, j) with sender i and j ̸= i, across

the same T periods, because εit = yit − λ
∑n

j=1wijtyjt − · · · − αi enters the latent

utility model whenever i is the sender.
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1. Log-Prior:

log p(αi) = −1

2
(αi − αi)

THαi
(αi − αi) + const

2. Log-Likelihood from yit:

Define residual:

rit = yit − λ
∑
j

wijtyjt − xitβ1 −
∑
j

wijtxjtβ2 − τt,

so that εit = rit − αi.

Then the log-likelihood becomes:

log p(y | ·) = − 1

2σ2
ε

T∑
t=1

(rit − αi)
2 + const

3. Log-Likelihood from ∆uijt:

Define:

sijt = ∆uijt − citγ1 − cjtγ2 − cijtγ3,

so that the model is:

∆uijt = sijt + δεit + ηijt,

and substituting εit = rit − αi, we get:

log p(∆u | ·) = −1

2

T∑
t=1

∑
j ̸=i

(sijt − δ(rit − αi))
2 + const

4. Combined Log-Posterior:

log p(αi | ·) = −1

2
Hαi

(αi − αi)
2 − 1

2σ2
ε

T∑
t=1

(rit − αi)
2

−1

2

T∑
t=1

∑
j ̸=i

(sijt − δ(rit − αi))
2 + const

Expanding and collecting terms:

28



5. Posterior Quadratic Term (coefficient of α2
i ):

Hαi
+
T

σ2
ε

+ δ2
T∑
t=1

∑
j ̸=i

1 = Hαi
+
T

σ2
ε

+ δ2T (n− 1)

Linear Term (coefficient of αi):

Hαi
αi +

1

σ2
ε

T∑
t=1

rit − δ
T∑
t=1

∑
j ̸=i

(sijt − δrit)

6. Posterior Parameters:

The full conditional is:

αi ∼ N (αi, H
−1

αi
),

where:

Hαi
= Hαi

+ T

(
1

σ2
ε

+ δ2(n− 1)

)
,

αi = H
−1

αi

[
Hαi

αi +

(
1

σ2
ε

+ δ2(n− 1)

) T∑
t=1

rit − δ
T∑
t=1

∑
j ̸=i

sijt

]

Substituting expressions for rit and sijt:

αi = H
−1

αi

[
Hαi

αi +

(
1

σ2
ε

+ δ2(n− 1)

) T∑
t=1

(
yit − λ

n∑
j=1

wijtyjt − xitβ1 −
n∑

j=1

wijtxjtβ2 − τt

)

−δ
T∑
t=1

n∑
j=1
j ̸=i

(∆uijt − citγ1 − cjtγ2 − cijtγ3))


8.5 Posterior Distribution of τt

The full conditional density for a single time fixed effect p(τt | y,∆u, ·) is proportional
to its Gaussian prior and to every likelihood term that contains τt:

• Prior: τt ∼ N (τ t, H
−1
τt )

• Outcome likelihood yit: for all individuals i = 1, . . . , n in the same period t,

because τt appears in the mean of every yit only through the time index t.
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• Dyadic likelihood ∆uijt: for every dyad (i, j) with i ̸= j in that same period

t, since the senderâes structural error εit = yit − λ
∑n

j=1wijtyjt − Zitβ − αi − τt

appears in the latent utility equation whenever the time index is t.

1. Log-Prior for τt:

log p(τt) = −1

2
(τt − τ t)

THτt(τt − τ t) + const

2. Log-Likelihood from yit at time t:

Define the residual excluding τt:

rit = yit − λ
n∑

j=1

wijtyjt − xitβ1 −
n∑

j=1

wijtxjtβ2 − αi

Then εit = rit − τt, so the log-likelihood becomes:

log p(yt | ·) = − 1

2σ2
ε

n∑
i=1

(rit − τt)
2 + const

3. Log-Likelihood from ∆uijt at time t:

Define:

sijt = ∆uijt − citγ1 − cjtγ2 − cijtγ3

Then:

∆uijt = sijt + δεit + ηijt

Substitute εit = rit − τt:

log p(∆ut | ·) = −1

2

n∑
i=1

n∑
j=1
j ̸=i

(sijt − δ(rit − τt))
2 + const

4. Combined Log-Posterior:

log p(τt | ·) = −1

2
Hτt(τt − τ t)

2 − 1

2σ2
ε

n∑
i=1

(rit − τt)
2

−1

2

n∑
i=1

n∑
j=1
j ̸=i

(sijt − δ(rit − τt))
2 + const
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5. Expand and Collect Terms

Quadratic term (coefficient of τ 2t ):

Hτt +
n

σ2
ε

+ δ2
n∑

i=1

n∑
j=1
j ̸=i

1 = Hτt +
n

σ2
ε

+ δ2n(n− 1)

Linear term (coefficient of τt):

Hτt τ t +
1

σ2
ε

n∑
i=1

rit − δ

n∑
i=1

n∑
j=1
j ̸=i

(sijt − δrit)

6. Posterior Parameters

The full conditional is:

τt ∼ N (τ t, H
−1

τt )

where:

Hτt = Hτt +
n

σ2
ε

+ δ2n(n− 1),

τ t = H
−1

τt

Hτt τ t +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

rit − δ
n∑

i=1

n∑
j=1
j ̸=i

sijt


Optionally, substitute expressions for rit and sijt:

τ t = H
−1

τt

[
Hτt τ t +

(
1

σ2
ε

+ δ2(n− 1)

) n∑
i=1

(
yit − λ

n∑
j=1

wijtyjt − xitβ1 −
n∑

j=1

wijtxjtβ2 − αi

)

−δ
n∑

i=1

n∑
j=1
j ̸=i

(∆uijt − citγ1 − cjtγ2 − cijtγ3)


8.6 Posterior Distribution of σ−2

ε

1. Prior Distribution

Given the prior:

σ−2
ε ∼ Gamma

(ν
2
,
g

2

)
,
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the prior density is:

p(σ−2
ε ) ∝ (σ−2

ε )
ν
2
−1 exp

(
−g
2
σ−2
ε

)
.

2. Likelihood Contribution

The Gaussian likelihood for εit (from the SAR model) is:

εit ∼ N (0, σ2
ε), independent for i = 1, . . . , n; t = 1, . . . , T.

The joint likelihood for all εit is:

p(y | ·) ∝ (σ2
ε)

−nT/2 exp

(
− 1

2σ2
ε

T∑
t=1

n∑
i=1

ε2it

)
.

Substituting σ2
ε = (σ−2

ε )−1, we get:

p(y | ·) ∝ (σ−2
ε )nT/2 exp

(
−σ

−2
ε

2

T∑
t=1

n∑
i=1

ε2it

)
.

3. Full Conditional (Proportionality)

The full conditional satisfies:

p(σ−2
ε | ·) ∝ p(σ−2

ε ) · p(y | ·).

Combining Steps 1 and 2:

p(σ−2
ε | ·) ∝ (σ−2

ε )
ν
2
−1 exp

(
−g
2
σ−2
ε

)
· (σ−2

ε )nT/2 exp

(
−σ

−2
ε

2

T∑
t=1

n∑
i=1

ε2it

)

∝ (σ−2
ε )

ν+nT
2

−1 exp

(
−σ−2

ε

[
g

2
+

1

2

T∑
t=1

n∑
i=1

ε2it

])
.

4. Posterior Distribution

Thus, the full conditional posterior is:

σ−2
ε | · ∼ Gamma

(
ν + nT

2
,
g

2
+

1

2

T∑
t=1

n∑
i=1

ε2it

)
.
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8.7 Unbalanced Panel

Observed sets and counts. For each period t = 1, . . . , T , let

It = { i ∈ {1, . . . , n} : (i, t) is observed }, nt = |It|.

For each individual i, let

Ti = { t ∈ {1, . . . , T} : (i, t) is observed }.

The total number of observed outcomes is Nobs =
∑T

t=1 nt.

Denote Zt = (Xt, WtXt), Zit = (xit,
∑

j wijtxjt), Cijt = (cit, cjt, cijt), Qijt = (Cijt, εit),

Γ = (γ1, γ2, γ3)
′, θ′ = (Γ′, δ), β = (β1, β2)

′, and Θ = {λ, β, α, τ, σε, θ}. Let It = { i :
(i, t) is observed } and nt := |It|. For each t, Wt is the nt ×nt submatrix of the spatial

weight matrix whose rows/columns are indexed by It in the same order as the stacked

outcome vector at t. Recall the SAR residual for each observed (i, t):

εit := yit − λ
nt∑
r=1

wirt yrt − αi − τt − Zitβ.

The joint kernel of the observed data
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P (Y,∆u | W,Θ)

∝
T∏
t=1

{
(2πσ2

ε)
−nt/2 |Int − λWt| exp

(
− 1

2σ2
ε

nt∑
i=1

ε 2
it

)
× exp

(
−1

2

nt∑
i=1

nt∑
j ̸=i

[∆uijt − CijtΓ− δ εit]
2

)}

=
T∏
t=1

{
(2πσ2

ε)
−nt/2 |Int − λWt| exp

(
−1

2

[
1

σ2
ε

nt∑
i=1

ε 2
it +

nt∑
i=1

nt∑
j ̸=i

[∆uijt − CijtΓ− δ εit]
2

])}

=
T∏
t=1

{
(2πσ2

ε)
−nt/2 |Int − λWt| exp

(
−1

2

[
nt∑
i=1

nt∑
j ̸=i

[∆uijt − CijtΓ]
2

− 2δ
nt∑
i=1

εit

nt∑
j ̸=i

[∆uijt − CijtΓ] +

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

ε 2
it

])}

= (2πσ2
ε)

− 1
2

∑T
t=1 nt

[
T∏
t=1

|Int − λWt|

]
exp

(
−1

2

[
T∑
t=1

nt∑
i=1

nt∑
j ̸=i

[∆uijt − CijtΓ]
2

−2δ
T∑
t=1

nt∑
i=1

εit

nt∑
j ̸=i

[∆uijt − CijtΓ] +
T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

ε 2
it

])
.

Substituting εit:

P (Y,∆u |W,Θ)

∝ (2πσ2
ε)

− 1
2
Nobs

[
T∏
t=1

|Int − λWt|

]

× exp

(
−1

2

[
T∑
t=1

nt∑
i=1

nt∑
j ̸=i

(∆uijt − CijtΓ)
2

− 2δ
T∑
t=1

nt∑
i=1

(
yit − λ

nt∑
k=1

wiktykt − Zitβ − αi − τt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

+
T∑
t=1

(
σ−2
ε + δ2(nt − 1)

) nt∑
i=1

(
yit − λ

nt∑
k=1

wiktykt − Zitβ − αi − τt

)2
 .
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Posterior of β:

Hβ = Hβ +
T∑
t=1

nt∑
i=1

(
σ−2
ε + δ2(nt − 1)

)
Z ′

itZit,

β = H
−1

β

[
Hβ β +

T∑
t=1

nt∑
i=1

{(
σ−2
ε + δ2(nt − 1)

)
Z ′

it

(
yit − λ

nt∑
k=1

wiktykt − αi − τt

)

− δ Z ′
it

nt∑
j ̸=i

(∆uijt − CijtΓ)

}]
.

Posterior of αi (normalization α1 = 0):

Hαi
= Hαi

+
T∑
t=1

(
σ−2
ε + δ2(nt − 1)

)
,

αi = H
−1

αi

[
Hαi

αi +
T∑
t=1

{(
σ−2
ε + δ2(nt − 1)

)(
yit − λ

nt∑
k=1

wiktykt − Zitβ − τt

)

− δ
nt∑
j ̸=i

(∆uijt − Cijt Γ)

}]
.

Posterior of τt (normalization τ1 = 0):

Hτt = Hτt +
nt∑
i=1

(
σ−2
ε + δ2(nt − 1)

)
= Hτt + nt

(
σ−2
ε + δ2(nt − 1)

)
,

τ t = H
−1

τt

[
Hτt τ t +

nt∑
i=1

{(
σ−2
ε + δ2(nt − 1)

)(
yit − λ

nt∑
k=1

wiktykt − Zitβ − αi

)

− δ

nt∑
j ̸=i

(∆uijt − Cijt Γ)

}]
.

Posterior for σ−2
ε (shape–rate). With the prior σ−2

ε ∼ Gamma
(
ν
2
, g
2

)
,

σ−2
ε | rest ∼ Gamma

(
ν +

∑T
t=1 nt

2
,
g +

∑T
t=1

∑nt

i=1 ε
2
it

2

)
.

Posterior of θ = (Γ′, δ)′. For each observed dyad (i, j, t) with i, j ∈ It and j ̸= i,

let Qijt = (Cijt, εit) and ∆uijt = Qijtθ + ηijt, where ηijt ∼ N (0, 1). With prior θ ∼
N (θ,H−1

θ ),
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Hθ = Hθ +
T∑
t=1

nt∑
i=1

nt∑
j ̸=i

Q′
ijtQijt,

θ = H
−1

θ

[
Hθ θ +

T∑
t=1

nt∑
i=1

nt∑
j ̸=i

Q′
ijt∆uijt

]
.

Full conditional density of λ

π(λ | Y,∆u,W,Θ|{λ})

∝
T∏
t=1

| Int − λWt | × exp

{
δ

T∑
t=1

nt∑
i=1

(
yit − λ

nt∑
k=1

wiktykt − Zitβ − αi − τt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

−1

2

T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
yit − λ

nt∑
k=1

wiktykt − Zitβ − αi − τt

)2
 .

This can be reduced to

π(λ | Y,∆u,W,Θ|{λ})

∝
T∏
t=1

| Int − λWt | × exp

{
−λδ

T∑
t=1

nt∑
i=1

(
nt∑
k=1

wiktykt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

−1

2

T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
λ

nt∑
k=1

wiktykt − (yit − Zitβ − αi − τt)

)2
?

Log of density:

log π(λ | Y,∆u,W,Θ|{λ})

∝
T∑
t=1

log | Int − λWt | − λδ

T∑
t=1

nt∑
i=1

(
nt∑
k=1

wiktykt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

−1

2

T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
λ

nt∑
k=1

wiktykt − (yit − Zitβ − αi − τt)

)2

.
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Quadratic expansion in λ

log π(λ | Y,∆u,W,Θ|{λ})

∝
T∑
t=1

log | Int − λWt | −
1

2

T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
nt∑
k=1

wiktykt

)2

λ2

+

[
T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(yit − Zitβ − αi − τt)

(
nt∑
k=1

wiktykt

)

−δ
T∑
t=1

nt∑
i=1

(
nt∑
k=1

wiktykt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

]
λ.

Since

∂

∂λ

T∑
t=1

log | Int − λWt | =
∂

∂λ

T∑
t=1

log

(
nt∏
r=1

(1− λµrt)

)

=
T∑
t=1

nt∑
r=1

∂

∂λ
log(1− λµrt) = −

T∑
t=1

nt∑
r=1

µrt

1− λµrt

,

∂

∂λ
log π(λ | Y,∆u,W,Θ|{λ})

= −
T∑
t=1

nt∑
r=1

µrt

1− λµrt

−


T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
nt∑
k=1

wiktykt

)2
λ

+
T∑
t=1

(
1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(yit − Zitβ − αi − τt)

(
nt∑
k=1

wiktykt

)

− δ
T∑
t=1

nt∑
i=1

(
nt∑
k=1

wiktykt

)
nt∑
j ̸=i

(∆uijt − CijtΓ)

∂2

∂λ2
log π(λ | Y,∆u,W,Θ|{λ})

= −
T∑
t=1

nt∑
r=1

µ2
rt

(1− λµrt)
2 −

T∑
t=1

( 1

σ2
ε

+ δ2(nt − 1)

) nt∑
i=1

(
nt∑
k=1

wiktykt

)2
 .
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